Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 11-12/2020

30.01.2020 | ORIGINAL ARTICLE

Thermal error modeling of gear hobbing machine based on IGWO-GRNN

verfasst von: Zihui Liu, Bo Yang, Chi Ma, Shilong Wang, Yefeng Yang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 11-12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is an increasingly urgent to improve the machining accuracy of the gear hobbing machine. Thermal error is the main source of the machining error of the hobbing machine, and reducing thermal error is necessary to improve the machining accuracy of hobbing machine. In this paper, a novel thermal error prediction model for the hobbing machine was proposed based on the improved gray wolf optimizer (IGWO) and generalized regression neural network (GRNN). The fuzzy cluster grouping and mean impact value (MIV) were firstly combined to select the typical temperature variables and reduce the coupling between temperature variables, so the robustness of the thermal error model can be guaranteed. Then GRNN was used to establish the mapping relationship between temperature variables and thermal error. The IGWO considering the proportion of local optimization and global optimization was applied to optimize the smoothing parameter of GRNN. Finally, the proposed IGWO-GRNN was used to predict the thermal drift of the workpiece shaft of the dry cutting hobbing machine, and its predictive accuracy and generalization performance were compared with four existing algorithms. The results indicate that the prediction accuracy of IGWO-GRNN is at least 5.1% higher than other algorithms and its generalization performance is also promoted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Okeefe W (1984) Handbook of practical gear design - dudley,dw. Power 128(12):111–111 Okeefe W (1984) Handbook of practical gear design - dudley,dw. Power 128(12):111–111
2.
Zurück zum Zitat Sun SL, Wang SL, Wang YW, Lim TC, Yang Y (2018) Prediction and optimization of hobbing gear geometric deviations. Mech Mach Theory 120:288–301CrossRef Sun SL, Wang SL, Wang YW, Lim TC, Yang Y (2018) Prediction and optimization of hobbing gear geometric deviations. Mech Mach Theory 120:288–301CrossRef
3.
Zurück zum Zitat Hsu RH, Su HH (2014) Tooth contact analysis for helical gear pairs generated by a modified hob with variable tooth thickness. Mech Mach Theory 71:40–51CrossRef Hsu RH, Su HH (2014) Tooth contact analysis for helical gear pairs generated by a modified hob with variable tooth thickness. Mech Mach Theory 71:40–51CrossRef
4.
Zurück zum Zitat Deng F, Tang Q, Li XG, Yang Y, Zou Z (2018) Study on mapping rules and compensation methods of cutting-force-induced errors and process machining precision in gear hobbing. Int J Adv Manuf Technol 97(9–12):3859–3871CrossRef Deng F, Tang Q, Li XG, Yang Y, Zou Z (2018) Study on mapping rules and compensation methods of cutting-force-induced errors and process machining precision in gear hobbing. Int J Adv Manuf Technol 97(9–12):3859–3871CrossRef
5.
Zurück zum Zitat Bouzakis KD, Kombogiannis S, Antoniadis A, Vidakis N (2002) Gear hobbing cutting process simulation and tool wear prediction models. J Manuf Sci Eng-Trans ASME 124(1):42–51CrossRef Bouzakis KD, Kombogiannis S, Antoniadis A, Vidakis N (2002) Gear hobbing cutting process simulation and tool wear prediction models. J Manuf Sci Eng-Trans ASME 124(1):42–51CrossRef
6.
Zurück zum Zitat Liu X, Zhao F, Mei XS, Tao T, Shen JG (2019) High-efficiency gear hobbing technics based on fuzzy adaptive control of spindle torque. Proc Inst Mech Eng Part C J Eng Mech Eng Sci 233(10):3331–3345CrossRef Liu X, Zhao F, Mei XS, Tao T, Shen JG (2019) High-efficiency gear hobbing technics based on fuzzy adaptive control of spindle torque. Proc Inst Mech Eng Part C J Eng Mech Eng Sci 233(10):3331–3345CrossRef
7.
Zurück zum Zitat Jiang J, Fang Z (2015) High-order tooth flank correction for a helical gear on a six-axis CNC hob machine. Mech Mach Theory 91:227–237CrossRef Jiang J, Fang Z (2015) High-order tooth flank correction for a helical gear on a six-axis CNC hob machine. Mech Mach Theory 91:227–237CrossRef
8.
Zurück zum Zitat BRYAN (1990) International status of thermal error research (1990). CIRP Ann Manuf Technol 39(2):645–656CrossRef BRYAN (1990) International status of thermal error research (1990). CIRP Ann Manuf Technol 39(2):645–656CrossRef
9.
Zurück zum Zitat Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Thermal error compensation based on genetic algorithm and artificial neural network of the shaft in the high-speed spindle system. Proc Inst Mech Eng B J Eng Manuf 231(5):753–767CrossRef Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Thermal error compensation based on genetic algorithm and artificial neural network of the shaft in the high-speed spindle system. Proc Inst Mech Eng B J Eng Manuf 231(5):753–767CrossRef
10.
Zurück zum Zitat Li Y, Zhao J, Ji SJ (2018) Thermal positioning error modeling of machine tools using a bat algorithm-based back propagation neural network. Int J Adv Manuf Technol 97(5–8):2575–2586CrossRef Li Y, Zhao J, Ji SJ (2018) Thermal positioning error modeling of machine tools using a bat algorithm-based back propagation neural network. Int J Adv Manuf Technol 97(5–8):2575–2586CrossRef
11.
Zurück zum Zitat Liu JL, Ma C, Wang SL, Wang SB, Yang B, Shi H (2019) Thermal-structure interaction characteristics of a high-speed spindle-bearing system. Int J Mach Tools Manuf 137:42–57CrossRef Liu JL, Ma C, Wang SL, Wang SB, Yang B, Shi H (2019) Thermal-structure interaction characteristics of a high-speed spindle-bearing system. Int J Mach Tools Manuf 137:42–57CrossRef
12.
Zurück zum Zitat Ma C, Mei XS, Yang J, Zhao L, Shi H (2015) Thermal characteristics analysis and experimental study on the high-speed spindle system. Int J Adv Manuf Technol 79(1–4):469–489CrossRef Ma C, Mei XS, Yang J, Zhao L, Shi H (2015) Thermal characteristics analysis and experimental study on the high-speed spindle system. Int J Adv Manuf Technol 79(1–4):469–489CrossRef
13.
Zurück zum Zitat Mian NS, Fletcher S, Longstaff AP, Myers A (2013) Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng J Int Soc Precis Eng 37(2):372–379 Mian NS, Fletcher S, Longstaff AP, Myers A (2013) Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng J Int Soc Precis Eng 37(2):372–379
14.
Zurück zum Zitat Li Y, Zhao J, Ji SJ, Liang FS (2019) The selection of temperature-sensitivity points based on K-harmonic means clustering and thermal positioning error modeling of machine tools. Int J Adv Manuf Technol 100(9–12):2333–2348CrossRef Li Y, Zhao J, Ji SJ, Liang FS (2019) The selection of temperature-sensitivity points based on K-harmonic means clustering and thermal positioning error modeling of machine tools. Int J Adv Manuf Technol 100(9–12):2333–2348CrossRef
15.
Zurück zum Zitat Liang RJ, Ye WH, Zhang HH, Yang QF (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9–12):1167–1176 Liang RJ, Ye WH, Zhang HH, Yang QF (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9–12):1167–1176
16.
Zurück zum Zitat Donmez MA, Blomquist DS, Hocken RJ, Liu CR, Barash MM (1986) A general methodology for machine-tool accuracy enhancement by error compensation. Precis Eng J Int Soc Precis Eng 8(4):187–196 Donmez MA, Blomquist DS, Hocken RJ, Liu CR, Barash MM (1986) A general methodology for machine-tool accuracy enhancement by error compensation. Precis Eng J Int Soc Precis Eng 8(4):187–196
17.
Zurück zum Zitat Miao EM, Gong YY, Niu PC, Ji CZ, Chen HD (2013) Robustness of thermal error compensation modeling models of CNC machine tools. Int J Adv Manuf Technol 69(9–12):2593–2603CrossRef Miao EM, Gong YY, Niu PC, Ji CZ, Chen HD (2013) Robustness of thermal error compensation modeling models of CNC machine tools. Int J Adv Manuf Technol 69(9–12):2593–2603CrossRef
18.
Zurück zum Zitat Tan F, Yin M, Wang L, Yin GF (2018) Spindle thermal error robust modeling using LASSO and LS-SVM. Int J Adv Manuf Technol 94(5–8):2861–2874CrossRef Tan F, Yin M, Wang L, Yin GF (2018) Spindle thermal error robust modeling using LASSO and LS-SVM. Int J Adv Manuf Technol 94(5–8):2861–2874CrossRef
19.
Zurück zum Zitat Xiang ST, Yang JH (2015) Error map construction and compensation of a NC lathe under thermal and load effects. Int J Adv Manuf Technol 79(1–4):645–655CrossRef Xiang ST, Yang JH (2015) Error map construction and compensation of a NC lathe under thermal and load effects. Int J Adv Manuf Technol 79(1–4):645–655CrossRef
20.
Zurück zum Zitat Lei MH, Jiang GD, Yang J, Mei XS, Xia P, Zhao L (2017) Thermal error modeling with dirty and small training sample for the motorized spindle of a precision boring machine. Int J Adv Manuf Technol 93(1–4):571–586CrossRef Lei MH, Jiang GD, Yang J, Mei XS, Xia P, Zhao L (2017) Thermal error modeling with dirty and small training sample for the motorized spindle of a precision boring machine. Int J Adv Manuf Technol 93(1–4):571–586CrossRef
21.
Zurück zum Zitat Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol 89(9–12):3071–3085CrossRef Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol 89(9–12):3071–3085CrossRef
22.
Zurück zum Zitat Huang YQ, Zhang J, Li X, Tian LJ (2014) Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. Int J Adv Manuf Technol 71(9–12):1669–1675CrossRef Huang YQ, Zhang J, Li X, Tian LJ (2014) Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. Int J Adv Manuf Technol 71(9–12):1669–1675CrossRef
23.
Zurück zum Zitat Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50(5–8):667–675CrossRef Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50(5–8):667–675CrossRef
24.
Zurück zum Zitat Han J, Wang LP, Wang HT, Cheng NB (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1–4):205–212CrossRef Han J, Wang LP, Wang HT, Cheng NB (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1–4):205–212CrossRef
25.
Zurück zum Zitat Cao WD, Yan CP, Ding L, Ma YF (2016) A continuous optimization decision making of process parameters in high-speed gear hobbing using IBPNN/DE algorithm. Int J Adv Manuf Technol 85(9–12):2657–2667CrossRef Cao WD, Yan CP, Ding L, Ma YF (2016) A continuous optimization decision making of process parameters in high-speed gear hobbing using IBPNN/DE algorithm. Int J Adv Manuf Technol 85(9–12):2657–2667CrossRef
26.
Zurück zum Zitat Cao HJ, Zhu LB, Li XG, Chen P, Chen YP (2016) Thermal error compensation of dry hobbing machine tool considering workpiece thermal deformation. Int J Adv Manuf Technol 86(5–8):1739–1751CrossRef Cao HJ, Zhu LB, Li XG, Chen P, Chen YP (2016) Thermal error compensation of dry hobbing machine tool considering workpiece thermal deformation. Int J Adv Manuf Technol 86(5–8):1739–1751CrossRef
27.
Zurück zum Zitat Zhang ZL, Yang JG (2016) Narrow density fraction prediction of coarse coal by image analysis and MIV-SVM. Int J Oil Gas Coal Technol 11(3):279–289CrossRef Zhang ZL, Yang JG (2016) Narrow density fraction prediction of coarse coal by image analysis and MIV-SVM. Int J Oil Gas Coal Technol 11(3):279–289CrossRef
28.
Zurück zum Zitat Li HZ, Guo S, Li CJ, Sun JQ (2013) A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl Based Syst 37:378–387CrossRef Li HZ, Guo S, Li CJ, Sun JQ (2013) A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl Based Syst 37:378–387CrossRef
29.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
30.
Zurück zum Zitat Muro C, Escobedo R, Spector L, Coppinger RP (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Process 88(3):192–197CrossRef Muro C, Escobedo R, Spector L, Coppinger RP (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Process 88(3):192–197CrossRef
31.
Zurück zum Zitat Long W, Jiao J, Liang X, Tang M (2018) Inspired grey wolf optimizer for solving large-scale function optimization problems. Appl Math Model 60:112–126MathSciNetCrossRef Long W, Jiao J, Liang X, Tang M (2018) Inspired grey wolf optimizer for solving large-scale function optimization problems. Appl Math Model 60:112–126MathSciNetCrossRef
Metadaten
Titel
Thermal error modeling of gear hobbing machine based on IGWO-GRNN
verfasst von
Zihui Liu
Bo Yang
Chi Ma
Shilong Wang
Yefeng Yang
Publikationsdatum
30.01.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 11-12/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-04957-z

Weitere Artikel der Ausgabe 11-12/2020

The International Journal of Advanced Manufacturing Technology 11-12/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.