Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

15.02.2020 | ORIGINAL ARTICLE

Characterization and optimization of the hydroforming process of AISI 316L steel hydraulic tubes

verfasst von: Alessandro Colpani, Antonio Fiorentino, Elisabetta Ceretti

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydroforming is a metal forming technology that enables the fabrication of complex parts in a low cycle time. The process is based on the plastic deformation of a blank sheet using a pressurized fluid. This paper focuses on the design of a tube hydroforming (THF) process to replace the current cut-and-weld practice for components produced by a company. Specifically, the study focuses on the characterization and optimization of the THF process for stainless steel T-joint parts produced in two sizes: small and large. The new production must improve the final components’ quality and maintain the technical requirements of the previous one, especially in terms of the parts’ geometry (in particular, the third branch minimum height and thickness) and material (AISI 316L), with competitive production costs. Accordingly, the process optimization is performed in three sequential steps. Initially, the process is characterized by the material flow stress and the friction between a tube and die. Subsequently, this information is used to develop a finite element method (FEM) model, which is validated based on experimental data. The FEM is used to optimize the process parameters (pressure, stroke, and trust force of the counterpunch) to improve the final component quality and guarantee the specific dimensional requirements. Finally, further improvements of the process are implemented (initial precrash of the tube, optimal length of the blank tube, and calibration pressure to avoid wrinkles in the final component). After the THF process optimization, emphasis is placed on the punch geometry. A study is conducted to avoid stress concentrations that may cause punch breakage. The results of this study allow the minimization of tube thinning during the hydroforming process, and guarantee the target value for the third branch height with minimal material consumption. Moreover, the evaluation of different geometrical alternatives allows the stresses acting on the punches to be reduced by 45%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang SH (1998) Developments in hydroforming. J Mater Process Technol 91:236–244CrossRef Zhang SH (1998) Developments in hydroforming. J Mater Process Technol 91:236–244CrossRef
2.
Zurück zum Zitat Han S, Woo Y, Hwang T, Oh I, Moon YH (2019) Tailor layered tube hydroforming for fabricating tubular parts with dissimilar thickness. Int J Mach Tools Manuf 138:51–65CrossRef Han S, Woo Y, Hwang T, Oh I, Moon YH (2019) Tailor layered tube hydroforming for fabricating tubular parts with dissimilar thickness. Int J Mach Tools Manuf 138:51–65CrossRef
3.
Zurück zum Zitat Langa LH, Wang ZR, Kang DC, Yuan SJ, Zhang SH, Danckert J, Nielsen KB (2004) Hydroforming highlights: sheet hydroforming and tube hydroforming. J Mater Process Technol 151:165–177CrossRef Langa LH, Wang ZR, Kang DC, Yuan SJ, Zhang SH, Danckert J, Nielsen KB (2004) Hydroforming highlights: sheet hydroforming and tube hydroforming. J Mater Process Technol 151:165–177CrossRef
4.
Zurück zum Zitat Alaswad A, Benyounis KY, Olabi AG (2012) Tube hydroforming process: a reference guide. Mater Des 33:328–339CrossRef Alaswad A, Benyounis KY, Olabi AG (2012) Tube hydroforming process: a reference guide. Mater Des 33:328–339CrossRef
5.
Zurück zum Zitat Ahmed M, Hashmi MSJ (1997) Estimation of machine parameters for hydraulic bulge forming of tubular components. J Mater Process Technol 64:9–23CrossRef Ahmed M, Hashmi MSJ (1997) Estimation of machine parameters for hydraulic bulge forming of tubular components. J Mater Process Technol 64:9–23CrossRef
6.
Zurück zum Zitat Chu GN, Chen G, Lin YL, Yuan SJ (2019) Tube hydro-forging − a method to manufacture hollow component with varied cross-section perimeters. J Mater Process Technol 265:150–157CrossRef Chu GN, Chen G, Lin YL, Yuan SJ (2019) Tube hydro-forging − a method to manufacture hollow component with varied cross-section perimeters. J Mater Process Technol 265:150–157CrossRef
8.
Zurück zum Zitat Koç M, Altan T (2001) Overall review of the tube hydroforming (THF) technology. J Mater Process Technol 108:384–393CrossRef Koç M, Altan T (2001) Overall review of the tube hydroforming (THF) technology. J Mater Process Technol 108:384–393CrossRef
9.
Zurück zum Zitat Kim BJ, VanTyne CJ, Lee MY, Moon YH (2006) Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy. J Mater Process Technol 187-188:296–299CrossRef Kim BJ, VanTyne CJ, Lee MY, Moon YH (2006) Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy. J Mater Process Technol 187-188:296–299CrossRef
10.
Zurück zum Zitat Moon YH, Kim DW, Van Tyne CJ (2008) Analytical model for prediction of sidewall curl during stretch-bend sheet metal forming. Int J Mech Sci 50:666–675CrossRef Moon YH, Kim DW, Van Tyne CJ (2008) Analytical model for prediction of sidewall curl during stretch-bend sheet metal forming. Int J Mech Sci 50:666–675CrossRef
11.
Zurück zum Zitat Oh SH, Jeon BH, Kim HY, Yang JB (2006) Applications of hydroforming processes to automobile parts. J Mater Process Technol 174:42–55CrossRef Oh SH, Jeon BH, Kim HY, Yang JB (2006) Applications of hydroforming processes to automobile parts. J Mater Process Technol 174:42–55CrossRef
12.
Zurück zum Zitat Dohmann F, Hartl C (1996) Hydroforming – a method to manufacture light weight parts. J Mater Process Technol 60:669–676CrossRef Dohmann F, Hartl C (1996) Hydroforming – a method to manufacture light weight parts. J Mater Process Technol 60:669–676CrossRef
13.
Zurück zum Zitat Liu J, Zhang Z, Manabe K, Li Y, Misra RDK (2014) Microstructure evolution in TRIP-aided seamless steel tube during T-shape hydroforming process. Mater Charact 94:149–160CrossRef Liu J, Zhang Z, Manabe K, Li Y, Misra RDK (2014) Microstructure evolution in TRIP-aided seamless steel tube during T-shape hydroforming process. Mater Charact 94:149–160CrossRef
14.
Zurück zum Zitat Kang BH, Lee MY, Shon SM, Moon YH (2007) Forming various shapes of tubular bellows using a single-step hydroforming process. J Mater Process Technol 194:1–6CrossRef Kang BH, Lee MY, Shon SM, Moon YH (2007) Forming various shapes of tubular bellows using a single-step hydroforming process. J Mater Process Technol 194:1–6CrossRef
15.
Zurück zum Zitat Fiorentino A, Ceretti E, Giardini C (2013) Tube hydroforming compression test for friction estimation—numerical inverse method, application, and analysis. Int J Adv Manuf Technol 64:695–705CrossRef Fiorentino A, Ceretti E, Giardini C (2013) Tube hydroforming compression test for friction estimation—numerical inverse method, application, and analysis. Int J Adv Manuf Technol 64:695–705CrossRef
16.
Zurück zum Zitat Luege M, Luccioni BM (2008) Numerical simulation of the lubricant performance in tube hydroforming. J Mater Process Technol 198:372–380CrossRef Luege M, Luccioni BM (2008) Numerical simulation of the lubricant performance in tube hydroforming. J Mater Process Technol 198:372–380CrossRef
17.
Zurück zum Zitat Fiorentino A, Ceretti E, Giardini C (2013) The THF compression test for friction estimation: study on the influence of the tube material. Key Eng Mater 549:423–428CrossRef Fiorentino A, Ceretti E, Giardini C (2013) The THF compression test for friction estimation: study on the influence of the tube material. Key Eng Mater 549:423–428CrossRef
18.
Zurück zum Zitat Fiorentino A, Marzi R, Ceretti E, Giardini C (2011) Numerical inverse method for friction coefficient estimation in tube hydroforming. Key Eng Mater 473:548–555CrossRef Fiorentino A, Marzi R, Ceretti E, Giardini C (2011) Numerical inverse method for friction coefficient estimation in tube hydroforming. Key Eng Mater 473:548–555CrossRef
19.
Zurück zum Zitat Hwang YM, Lin YK, Altan T (2007) Evaluation of tubular materials by a hydraulic bulge test. Int J Mach Tool Manu 47:343–351CrossRef Hwang YM, Lin YK, Altan T (2007) Evaluation of tubular materials by a hydraulic bulge test. Int J Mach Tool Manu 47:343–351CrossRef
20.
Zurück zum Zitat Bortot P, Ceretti E, Giardini C (2008) The determination of flow stress of tubular material for hydroforming applications. J Mater Process Technol 203:381–388CrossRef Bortot P, Ceretti E, Giardini C (2008) The determination of flow stress of tubular material for hydroforming applications. J Mater Process Technol 203:381–388CrossRef
21.
Zurück zum Zitat Michaeli W, Maesing R (2010) Injection moulding and metal forming in one process step. Prog Rubber Plast Recycl Technol 26(4):155–166CrossRef Michaeli W, Maesing R (2010) Injection moulding and metal forming in one process step. Prog Rubber Plast Recycl Technol 26(4):155–166CrossRef
22.
Zurück zum Zitat Farahani S, Arezoodar AF, Dariani BM, Pilla S (2018) An analytical model for nonhydrostatic sheet metal bulging process by means of polymer melt pressure. J Manuf Sci Eng 140:091010CrossRef Farahani S, Arezoodar AF, Dariani BM, Pilla S (2018) An analytical model for nonhydrostatic sheet metal bulging process by means of polymer melt pressure. J Manuf Sci Eng 140:091010CrossRef
23.
Zurück zum Zitat Farahani S, Yelne A, Akhavan Niaki F, Pilla S (2019) Numerical simulation for the hybrid process of sheet metal forming and injection molding using smoothed particle hydrodynamics method. SAE Tech Pap Ser 1:1–8 Farahani S, Yelne A, Akhavan Niaki F, Pilla S (2019) Numerical simulation for the hybrid process of sheet metal forming and injection molding using smoothed particle hydrodynamics method. SAE Tech Pap Ser 1:1–8
24.
Zurück zum Zitat Attanasio A, Fiorentino A, Ceretti E, Giardini C (2007) Experimental device to study surface contacts in forming processes. American Institute of Physics 907:275–278. In: Proceedings of the 10th ESAFORM Conference on Material Forming. 18–20 April 2007, Zaragoza (Spain). https://doi.org/10.1063/1.2729524 Attanasio A, Fiorentino A, Ceretti E, Giardini C (2007) Experimental device to study surface contacts in forming processes. American Institute of Physics 907:275–278. In: Proceedings of the 10th ESAFORM Conference on Material Forming. 18–20 April 2007, Zaragoza (Spain). https://​doi.​org/​10.​1063/​1.​2729524
26.
Zurück zum Zitat Hu ZJ, Zhang FF, Chen J, Han C (2015) Uniform thickness distribution oriented preforming design of tube hydroforming with rectangular section. J Plast Eng 22(3):92–97 Hu ZJ, Zhang FF, Chen J, Han C (2015) Uniform thickness distribution oriented preforming design of tube hydroforming with rectangular section. J Plast Eng 22(3):92–97
27.
Zurück zum Zitat Trott, A., & Nikhare, C. P. (2018). Effect of preform during low pressure tube hydroforming. In Advanced Manufacturing (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 2). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2018-86090 Trott, A., & Nikhare, C. P. (2018). Effect of preform during low pressure tube hydroforming. In Advanced Manufacturing (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 2). American Society of Mechanical Engineers (ASME). https://​doi.​org/​10.​1115/​IMECE2018-86090
28.
Zurück zum Zitat Guo N, Liu K, Zheng S, Xue K (2019) A systemic study on hydroforming process of exhaust pipe by FE simulation and experiment. Int J Mater Prod Technol 59:34–47CrossRef Guo N, Liu K, Zheng S, Xue K (2019) A systemic study on hydroforming process of exhaust pipe by FE simulation and experiment. Int J Mater Prod Technol 59:34–47CrossRef
29.
Zurück zum Zitat Lin SL, Chen ZW, Chen FK (2018) A study on localized expansion defects in tube hydroforming. J Chin Inst Eng 41:149–159CrossRef Lin SL, Chen ZW, Chen FK (2018) A study on localized expansion defects in tube hydroforming. J Chin Inst Eng 41:149–159CrossRef
30.
Zurück zum Zitat Cui XL, Wang XS, Yuan SJ (2019) Effects of mechanical property parameters on wrinkling behavior of thin-walled tubes in hydroforming process. Int J Adv Manuf Technol 100:729–740CrossRef Cui XL, Wang XS, Yuan SJ (2019) Effects of mechanical property parameters on wrinkling behavior of thin-walled tubes in hydroforming process. Int J Adv Manuf Technol 100:729–740CrossRef
31.
Zurück zum Zitat Mingtao C, Xiaoting X, Jianghuai T, Heng G, Jianping W (2018) Improvement of formability in T-shaped tube hydroforming by a three-stage punch shape. Int J Adv Manuf Technol 95:2931–2941CrossRef Mingtao C, Xiaoting X, Jianghuai T, Heng G, Jianping W (2018) Improvement of formability in T-shaped tube hydroforming by a three-stage punch shape. Int J Adv Manuf Technol 95:2931–2941CrossRef
32.
Zurück zum Zitat Chen C, Gan Y, Du J, Huang C, Chen Q (2011) FEM simulation and optimization of process parameters for tube hydroforming. Appl Mech Mater 101-102:901–904CrossRef Chen C, Gan Y, Du J, Huang C, Chen Q (2011) FEM simulation and optimization of process parameters for tube hydroforming. Appl Mech Mater 101-102:901–904CrossRef
Metadaten
Titel
Characterization and optimization of the hydroforming process of AISI 316L steel hydraulic tubes
verfasst von
Alessandro Colpani
Antonio Fiorentino
Elisabetta Ceretti
Publikationsdatum
15.02.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05067-6

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.