Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

03.07.2020 | ORIGINAL ARTICLE

Temperature and residual stress distribution of FGM parts by DED process: modeling and experimental validation

verfasst von: Lan Li, Xinchang Zhang, Wenyuan Cui, Frank Liou, Wen Deng, Wei Li

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser direct energy deposition (DED) is an advanced additive manufacturing technology, which can produce fully dense and functionally graded materials (FGMs) metal parts. Residual stress and distortion are crucial issues in DED process reducing the mechanical strength and the geometrical accuracy of the fabricated components. This work provided a combined approach involving thermo-mechanical model and experimental validation toward two FGM cases fabricated by DED process to reveal the residual stress and distortion distribution. Two fabrication approaches were used: a direct deposition of Cu on SS304L and a structure graded from iron alloy SS316L to nickel alloy In718 to pure Cu based on SS304L substrate. Thermal histories of the substrate and the residual stress on cross-section of the FGM part were measured to calibrate the 3D coupled thermo-mechanical model. The predicted temperature and stress results showed a good agreement with the experimental measurements. The distortion results of both fabricated walls showed an upwards bent trend. Because of the high-temperature gradient induced by the mismatch in the thermal expansion coefficient of different materials, very high distortion was observed at two edge regions of the second printing material of FGM part. From the residual stress standpoint, direct joining Cu on SS304L resulted in extremely high residual stress at the bi-material interface due to mismatch in the thermal expansion coefficient of different materials. By introducing SS316L and In718 buffer layers, defect-free Cu can be successfully deposited on SS304L. This model can be used to predict the stress behavior of products fabricated by DED process and to help with the optimization of design and material chosen of FGMs process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, Berlin Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, Berlin
3.
Zurück zum Zitat Debroy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224 Debroy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224
4.
Zurück zum Zitat Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164 Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164
5.
Zurück zum Zitat Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372 Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372
6.
Zurück zum Zitat Em VT, Ivanov SY, Karpov ID, Rylov SA, Zemlyakov EV, Babkin KD (2018) Residual stress measurements of laser metal deposited Ti- 6Al-4V parts using neutron diffraction. J Phys Conf Ser 1109(1):012049 Em VT, Ivanov SY, Karpov ID, Rylov SA, Zemlyakov EV, Babkin KD (2018) Residual stress measurements of laser metal deposited Ti- 6Al-4V parts using neutron diffraction. J Phys Conf Ser 1109(1):012049
7.
Zurück zum Zitat Wang Z, Denlinger E, Michaleris P, Stoica AD, Ma D, Beese M (2017) Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions. Mater Des 113:169–177 Wang Z, Denlinger E, Michaleris P, Stoica AD, Ma D, Beese M (2017) Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions. Mater Des 113:169–177
8.
Zurück zum Zitat Sochalski-Kolbus L, Payzant EA, Cornwell PA, Watkins TR, Babu SS, Dehoff RR, Lorenz M, Ovchinnikova O, Duty C (2015) Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metall Mater Trans A 46(3):1419–1432 Sochalski-Kolbus L, Payzant EA, Cornwell PA, Watkins TR, Babu SS, Dehoff RR, Lorenz M, Ovchinnikova O, Duty C (2015) Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering. Metall Mater Trans A 46(3):1419–1432
9.
Zurück zum Zitat Luzin V, Hoye N (2016) Stress in thin wall structures made by layer additive manufacturing. Mater Res Proc 2:497–502 Luzin V, Hoye N (2016) Stress in thin wall structures made by layer additive manufacturing. Mater Res Proc 2:497–502
10.
Zurück zum Zitat Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19 Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19
11.
Zurück zum Zitat Ye R, Smugeresky JE, Zheng B, Zhou Y, Lavernia EJ (2006) Numerical modeling of the thermal behavior during the LENS® process. Mater Sci Eng A 428(1–2):47–53 Ye R, Smugeresky JE, Zheng B, Zhou Y, Lavernia EJ (2006) Numerical modeling of the thermal behavior during the LENS® process. Mater Sci Eng A 428(1–2):47–53
12.
Zurück zum Zitat Ghosh S, Choi J (2005) Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process. J Laser Appl 17:144–158 Ghosh S, Choi J (2005) Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process. J Laser Appl 17:144–158
13.
Zurück zum Zitat Lu X, Lin X, Chiumenti M, Cervera M, Hu Y, Ji X, Ma L, Yang H, Huang W (2019) Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by directed energy deposition: modelling and experimental calibration. Additive Manuf 26:166–179 Lu X, Lin X, Chiumenti M, Cervera M, Hu Y, Ji X, Ma L, Yang H, Huang W (2019) Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by directed energy deposition: modelling and experimental calibration. Additive Manuf 26:166–179
14.
Zurück zum Zitat H Liu, TE Sparks, FW Liou, DM Dietrich. Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process, 2013 H Liu, TE Sparks, FW Liou, DM Dietrich. Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process, 2013
15.
Zurück zum Zitat Yang Q, Zhang P, Cheng L, Min Z, Chyu M, A. C. To (2016) Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing. Addit. Manuf. 12:169–177 Yang Q, Zhang P, Cheng L, Min Z, Chyu M, A. C. To (2016) Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing. Addit. Manuf. 12:169–177
16.
Zurück zum Zitat Labudovic M, Hu D, Kovacevic R (2003) A three dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci 38:35–49 Labudovic M, Hu D, Kovacevic R (2003) A three dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci 38:35–49
17.
Zurück zum Zitat Li W, Chen X, Yan L, Zhang J, Zhang X, Liou F (Mar. 2018) Additive manufacturing of a new Fe-Cr-Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation. Int J Adv Manuf Technol 95(1):1013–1023 Li W, Chen X, Yan L, Zhang J, Zhang X, Liou F (Mar. 2018) Additive manufacturing of a new Fe-Cr-Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation. Int J Adv Manuf Technol 95(1):1013–1023
18.
Zurück zum Zitat Li W, Yan L, Chen X, Zhang J, Zhang X, Liou F (2018) Directed energy depositing a new Fe-Cr-Ni alloy with gradually changing composition with elemental powder mixes and particle size’ effect in fabrication process. J Mater Process Technol 255:96–104 Li W, Yan L, Chen X, Zhang J, Zhang X, Liou F (2018) Directed energy depositing a new Fe-Cr-Ni alloy with gradually changing composition with elemental powder mixes and particle size’ effect in fabrication process. J Mater Process Technol 255:96–104
19.
Zurück zum Zitat Zhang X, Pan T, Li W, Liou F (Mar. 2019) Experimental characterization of a direct metal deposited cobalt-based alloy on tool steel for component repair. JOM 71(3):946–955 Zhang X, Pan T, Li W, Liou F (Mar. 2019) Experimental characterization of a direct metal deposited cobalt-based alloy on tool steel for component repair. JOM 71(3):946–955
20.
Zurück zum Zitat Cui W, Karnati S, Zhang X, Burns E, Liou F (2018) Fabrication of AlCoCrFeNi high-entropy alloy coating on an AISI 304 substrate via a CoFe2Ni intermediate layer. Entropy 21(1) Cui W, Karnati S, Zhang X, Burns E, Liou F (2018) Fabrication of AlCoCrFeNi high-entropy alloy coating on an AISI 304 substrate via a CoFe2Ni intermediate layer. Entropy 21(1)
21.
Zurück zum Zitat Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410 Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410
22.
Zurück zum Zitat Lin X, Yue TM (2005) Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88DT alloy. Mat Sci Eng A 402(1e2):294–306 Lin X, Yue TM (2005) Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88DT alloy. Mat Sci Eng A 402(1e2):294–306
23.
Zurück zum Zitat Messler RW (1999) Principles of welding: processes, Physics, Chemistry, and Metallurgy. John Wiley & Sons, Inc., New York Messler RW (1999) Principles of welding: processes, Physics, Chemistry, and Metallurgy. John Wiley & Sons, Inc., New York
24.
Zurück zum Zitat Pierre Muller, Pascal Mognol, Jean-YvesHascoet, Modeling and control of a direct laser powder deposition process for functionally graded materials (FGM) parts manufacturing, J Mater Process Technol, Volume 213, Issue 5, May 2013, Pages 685–692 Pierre Muller, Pascal Mognol, Jean-YvesHascoet, Modeling and control of a direct laser powder deposition process for functionally graded materials (FGM) parts manufacturing, J Mater Process Technol, Volume 213, Issue 5, May 2013, Pages 685–692
25.
Zurück zum Zitat Banerjee R, Collins PC, Bhattacharyya D, Banerjee S, Fraser HL (2003) Microstructural evolution in laser deposited compositionally graded alpha/beta titanium-vanadium alloys. Acta Mat 51(11):3277e3292 Banerjee R, Collins PC, Bhattacharyya D, Banerjee S, Fraser HL (2003) Microstructural evolution in laser deposited compositionally graded alpha/beta titanium-vanadium alloys. Acta Mat 51(11):3277e3292
26.
Zurück zum Zitat Collins PC, Banerjee R, Banerjee S, Fraser HL (2003) Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys. Mat Sci Eng A 352(1e2):118–128 Collins PC, Banerjee R, Banerjee S, Fraser HL (2003) Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys. Mat Sci Eng A 352(1e2):118–128
27.
Zurück zum Zitat Qian T, Liu D, Tian X, Liu C, Wang H (2014) Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process. Trans Nonferrous Met Soc China 24(9):2729e2736 Qian T, Liu D, Tian X, Liu C, Wang H (2014) Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process. Trans Nonferrous Met Soc China 24(9):2729e2736
28.
Zurück zum Zitat Ren HS, Liu D, Tang HB, Tian XJ, Zhu YY, Wang HM (2014) Microstructure and mechanical properties of a graded structural material. Mat Sci Eng A 611:362e369 Ren HS, Liu D, Tang HB, Tian XJ, Zhu YY, Wang HM (2014) Microstructure and mechanical properties of a graded structural material. Mat Sci Eng A 611:362e369
29.
Zurück zum Zitat Li W, Karnati S, Kriewall C, Liou F, Newkirk J, Taminger KMB, Seufzer WJ Fabrication and characterization of a functionally graded material from Ti-6Al-4V to SS316 by laser metal deposition. Additive Manuf 14:95–104 Li W, Karnati S, Kriewall C, Liou F, Newkirk J, Taminger KMB, Seufzer WJ Fabrication and characterization of a functionally graded material from Ti-6Al-4V to SS316 by laser metal deposition. Additive Manuf 14:95–104
30.
Zurück zum Zitat Li W, Liou F, Newkirk J, Taminger KMB, Seufzer WJ Investigation on Ti6Al4V-V-Cr-Fe-SS316 multi-layers metallic structure fabricated by laser 3D printing. Scientific reports 7(1):7977 Li W, Liou F, Newkirk J, Taminger KMB, Seufzer WJ Investigation on Ti6Al4V-V-Cr-Fe-SS316 multi-layers metallic structure fabricated by laser 3D printing. Scientific reports 7(1):7977
31.
Zurück zum Zitat Zhang J, Zhang Y, Li W, Karnati S, Liou F, Newkirk J (2018) Microstructure and properties of functionally graded materials Ti6Al4V/TiC fabricated by direct laser deposition. Rapid Prototyp J 24(4):677–687 Zhang J, Zhang Y, Li W, Karnati S, Liou F, Newkirk J (2018) Microstructure and properties of functionally graded materials Ti6Al4V/TiC fabricated by direct laser deposition. Rapid Prototyp J 24(4):677–687
32.
Zurück zum Zitat Li W, Liou F, Newkirk J, Brown Taminger KM, Seufzer WJ (2017) Ti6Al4V/SS316 multi-metallic structure fabricated by laser 3D printing and thermodynamic modeling prediction. Int J Adv Manuf Technol 92:4511–4523 Li W, Liou F, Newkirk J, Brown Taminger KM, Seufzer WJ (2017) Ti6Al4V/SS316 multi-metallic structure fabricated by laser 3D printing and thermodynamic modeling prediction. Int J Adv Manuf Technol 92:4511–4523
33.
Zurück zum Zitat Rombouts M, Maes G, Mertens M, Hendrix W (2012) Laser metal deposition of inconel 625: microstructure and mechanical properties. J. Laser Appl. 24(5):052007 Rombouts M, Maes G, Mertens M, Hendrix W (2012) Laser metal deposition of inconel 625: microstructure and mechanical properties. J. Laser Appl. 24(5):052007
34.
Zurück zum Zitat Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of inconel 625 superalloy: microstructural evolution and thermal stability. Mat Sci Eng A 509(1e2):98–104 Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of inconel 625 superalloy: microstructural evolution and thermal stability. Mat Sci Eng A 509(1e2):98–104
35.
Zurück zum Zitat Shah K, Khan A, Ali S, Khan M, Pinkerton AJ (2014) Parametric study of development of inconel-steel functionally graded materials by laser direct metal deposition. Mat Des 54:531e538 Shah K, Khan A, Ali S, Khan M, Pinkerton AJ (2014) Parametric study of development of inconel-steel functionally graded materials by laser direct metal deposition. Mat Des 54:531e538
36.
Zurück zum Zitat Zhang X, Chen Y, Tan P, Cui W, Li L, Liou F (2019) Joining of copper and stainless steel 304L using direct metal deposition. Solid Freeform Fabrication 6061:1068–1081 Zhang X, Chen Y, Tan P, Cui W, Li L, Liou F (2019) Joining of copper and stainless steel 304L using direct metal deposition. Solid Freeform Fabrication 6061:1068–1081
37.
Zurück zum Zitat Imran MK, Masood SH, Brandt M, Bhattacharya S, Mazumder J (2011) Direct metal deposition (DMD) of H13 tool steel on copper alloy substrate: evaluation of mechanical properties. Mater Sci Eng A 528:3342–3349 Imran MK, Masood SH, Brandt M, Bhattacharya S, Mazumder J (2011) Direct metal deposition (DMD) of H13 tool steel on copper alloy substrate: evaluation of mechanical properties. Mater Sci Eng A 528:3342–3349
38.
Zurück zum Zitat Sun Z, Karppi R (1996) The application of electron beam welding for the joining of dissimilar metals: an overview. J Mat Process Technol 59(3):257–267 SPEC. ISS Sun Z, Karppi R (1996) The application of electron beam welding for the joining of dissimilar metals: an overview. J Mat Process Technol 59(3):257–267 SPEC. ISS
39.
Zurück zum Zitat Megahed M, Mindt H-W, N’Dri N, Duan H, Desmaison O (2016) Metal additive manufacturing process and residual stress modeling. Integrat Mater Manuf Innov 5:1–33 Megahed M, Mindt H-W, N’Dri N, Duan H, Desmaison O (2016) Metal additive manufacturing process and residual stress modeling. Integrat Mater Manuf Innov 5:1–33
40.
Zurück zum Zitat Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A (2018) Analytical and numerical modelling of the direct metal deposition laser process. J Phys D Appl Phys 41:025403 Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A (2018) Analytical and numerical modelling of the direct metal deposition laser process. J Phys D Appl Phys 41:025403
41.
Zurück zum Zitat Jeff Irwin P, Michaleris A (2016) Line heat input model for additive manufacturing. J Manuf Sci Eng 138(11):111004 Jeff Irwin P, Michaleris A (2016) Line heat input model for additive manufacturing. J Manuf Sci Eng 138(11):111004
42.
Zurück zum Zitat Papadakis L, Loizou A, Risse J, Bremen S, Schrage J (2014) A computational reduction model for appraising structural effects in selective laser melting manufacturing: a methodical model reduction proposed for time-efficient finite element analysis of larger components in selective laser melting. Virtual Phys Prototype 9:17–25 Papadakis L, Loizou A, Risse J, Bremen S, Schrage J (2014) A computational reduction model for appraising structural effects in selective laser melting manufacturing: a methodical model reduction proposed for time-efficient finite element analysis of larger components in selective laser melting. Virtual Phys Prototype 9:17–25
43.
Zurück zum Zitat Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing
44.
Zurück zum Zitat Deng D, Murakawa H (September 2006) Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci 37(3):269–277 Deng D, Murakawa H (September 2006) Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci 37(3):269–277
45.
Zurück zum Zitat Ladani L, Romano J, Brindley W, Burlatsky S (2017) Effective liquid conductivity for improved simulation of thermal transport in laser beam melting powder bed technology. Add Man 14:13–23 Ladani L, Romano J, Brindley W, Burlatsky S (2017) Effective liquid conductivity for improved simulation of thermal transport in laser beam melting powder bed technology. Add Man 14:13–23
46.
Zurück zum Zitat Li L, Lough C, Replogle A, Bristow D, Landers R, Kinzel E (2017) Thermal modeling of 304L stainless steel selective laser melting. Solid Freeform Fabrication 6061:1068–1081 Li L, Lough C, Replogle A, Bristow D, Landers R, Kinzel E (2017) Thermal modeling of 304L stainless steel selective laser melting. Solid Freeform Fabrication 6061:1068–1081
47.
Zurück zum Zitat ANSYS Theory Manual, Release 8.1, ANSYS Inc., USA, 2004 ANSYS Theory Manual, Release 8.1, ANSYS Inc., USA, 2004
48.
Zurück zum Zitat Sigmund O (2011) Notes and exercises for the course:FEM-heavy (41525). Technical University of Denmark Sigmund O (2011) Notes and exercises for the course:FEM-heavy (41525). Technical University of Denmark
49.
Zurück zum Zitat Kar J, Roy SK, Roy GG (2016) Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel. J Mater Process Technol 233:174–185 Kar J, Roy SK, Roy GG (2016) Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel. J Mater Process Technol 233:174–185
50.
Zurück zum Zitat C. Wallis, B. Buchmayr, M. Kitzmantel, E. Brandstätter, Additive manufacturing of MARAGING steel on a copper substrate using selective laser melting, 2016 C. Wallis, B. Buchmayr, M. Kitzmantel, E. Brandstätter, Additive manufacturing of MARAGING steel on a copper substrate using selective laser melting, 2016
51.
Zurück zum Zitat Prevey PS (1986) X-ray diffraction residual stress techniques, vol 10. ASM International, ASM Handbook, pp 380–392 Prevey PS (1986) X-ray diffraction residual stress techniques, vol 10. ASM International, ASM Handbook, pp 380–392
Metadaten
Titel
Temperature and residual stress distribution of FGM parts by DED process: modeling and experimental validation
verfasst von
Lan Li
Xinchang Zhang
Wenyuan Cui
Frank Liou
Wen Deng
Wei Li
Publikationsdatum
03.07.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05673-4

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.