Skip to main content
Erschienen in: Electrical Engineering 3/2004

01.02.2004

Artificial neural networks for the narrow aperture dimension calculation of optimum gain pyramidal horns

verfasst von: K. Guney, N. Sarikaya

Erschienen in: Electrical Engineering | Ausgabe 3/2004

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new method based on artificial neural networks for calculating the narrow aperture dimension of the pyramidal horn is presented. The Levenberg–Marquardt algorithm is used to train the networks. The narrow aperture dimension calculated using artificial neural networks is used in the optimum gain pyramidal horn design. The computed gains of the designed pyramidal horns are in very good agreement with the desired gains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Love AW (1976) Electromagnetic horn antennas. IEEE Press, New York Love AW (1976) Electromagnetic horn antennas. IEEE Press, New York
2.
Zurück zum Zitat Balanis CA (1982) Antenna theory: Analysis and design. John Wiley, New York Balanis CA (1982) Antenna theory: Analysis and design. John Wiley, New York
3.
Zurück zum Zitat Hawkins DC (1992) Improvements to synthesis of waveguide horns. Electron Lett 28:879–881 Hawkins DC (1992) Improvements to synthesis of waveguide horns. Electron Lett 28:879–881
4.
Zurück zum Zitat Selvan KT (1999) Accurate design method for optimum gain pyramidal horns. Electron Lett 35:249–250CrossRef Selvan KT (1999) Accurate design method for optimum gain pyramidal horns. Electron Lett 35:249–250CrossRef
5.
Zurück zum Zitat Guney K (2001) Improved design method for optimum gain pyramidal horns. Int J RF Microwave Computer-Aided Eng 11:188–193 Guney K (2001) Improved design method for optimum gain pyramidal horns. Int J RF Microwave Computer-Aided Eng 11:188–193
6.
Zurück zum Zitat Guney K (2001) Simple design method for optimum gain pyramidal horns. AEU Int J Electron Commun 55:205–208 Guney K (2001) Simple design method for optimum gain pyramidal horns. AEU Int J Electron Commun 55:205–208
7.
Zurück zum Zitat Guney K (2001) A new design method for optimum gain pyramidal horns. Electromagnetics 21:497–505CrossRef Guney K (2001) A new design method for optimum gain pyramidal horns. Electromagnetics 21:497–505CrossRef
8.
Zurück zum Zitat Guney K, Hancer H (2003) Improved formulas for narrow and wide aperture dimensions of optimum gain pyramidal horn. Int J RF Microwave Computer-Aided Eng 13:239–245 Guney K, Hancer H (2003) Improved formulas for narrow and wide aperture dimensions of optimum gain pyramidal horn. Int J RF Microwave Computer-Aided Eng 13:239–245
9.
Zurück zum Zitat Haykin S (1994) Neural networks: A comprehensive foundation. Macmillan College, New York Haykin S (1994) Neural networks: A comprehensive foundation. Macmillan College, New York
10.
Zurück zum Zitat Zhang QJ, Gupta KC (2000) Neural networks for RF and microwave design. Artech House, Boston, MA Zhang QJ, Gupta KC (2000) Neural networks for RF and microwave design. Artech House, Boston, MA
11.
Zurück zum Zitat Christodoulou CG, Georgiopoulos M (2001) Application of neural networks in electromagnetics. Artech House, MA Christodoulou CG, Georgiopoulos M (2001) Application of neural networks in electromagnetics. Artech House, MA
12.
Zurück zum Zitat Sagiroglu S, Guney K (1997) Calculation of resonant frequency for an equilateral triangular microstrip antenna with the use of artificial neural networks. Microwave Opt Technol Lett 14:89–93CrossRef Sagiroglu S, Guney K (1997) Calculation of resonant frequency for an equilateral triangular microstrip antenna with the use of artificial neural networks. Microwave Opt Technol Lett 14:89–93CrossRef
13.
Zurück zum Zitat Sagiroglu S, Guney K, Erler M (1998) Resonant frequency calculation for circular microstrip antennas using artificial neural networks. Int J RF Microwave Computer-Aided Eng 8:270–277 Sagiroglu S, Guney K, Erler M (1998) Resonant frequency calculation for circular microstrip antennas using artificial neural networks. Int J RF Microwave Computer-Aided Eng 8:270–277
14.
Zurück zum Zitat Sagiroglu S, Guney K, Erler M (1999) Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptrons. Int J RF Microwave Computer-Aided Eng 9:277–286 Sagiroglu S, Guney K, Erler M (1999) Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptrons. Int J RF Microwave Computer-Aided Eng 9:277–286
15.
Zurück zum Zitat Karaboga D, Güney K, Sagiroglu S, Erler M (1999) Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proc Microwaves, Antennas Propag H 146:155–159 Karaboga D, Güney K, Sagiroglu S, Erler M (1999) Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proc Microwaves, Antennas Propag H 146:155–159
16.
Zurück zum Zitat Guney K, Erler M, Sagiroglu S (2000) Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas. Electromagnetics 20:387–400CrossRef Guney K, Erler M, Sagiroglu S (2000) Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas. Electromagnetics 20:387–400CrossRef
17.
Zurück zum Zitat Guney K, Sagiroglu S, Erler M (2001) Comparison of neural networks for resonant frequency computation of electrically thin and thick rectangular microstrip antennas. J Electromagn Waves Applic 15:1121–1145 Guney K, Sagiroglu S, Erler M (2001) Comparison of neural networks for resonant frequency computation of electrically thin and thick rectangular microstrip antennas. J Electromagn Waves Applic 15:1121–1145
18.
Zurück zum Zitat Guney K, Sagiroglu S, Erler M (2002) Design of rectangular microstrip antennas with the use of artificial neural networks. Neural Network World 4:361–370 Guney K, Sagiroglu S, Erler M (2002) Design of rectangular microstrip antennas with the use of artificial neural networks. Neural Network World 4:361–370
19.
Zurück zum Zitat Guney K, Sagiroglu S, Erler M (2002) Generalized neural method to determine resonant frequencies of various microstrip antennas. Int J RF Microwave Computer-Aided Eng 12:131–139 Guney K, Sagiroglu S, Erler M (2002) Generalized neural method to determine resonant frequencies of various microstrip antennas. Int J RF Microwave Computer-Aided Eng 12:131–139
20.
Zurück zum Zitat Yildiz C, Gultekin SS, Guney K, Sagiroglu S (2002) Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor. AEU Int J Electron Commun 56:396–406 Yildiz C, Gultekin SS, Guney K, Sagiroglu S (2002) Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor. AEU Int J Electron Commun 56:396–406
21.
Zurück zum Zitat Guney K, Sarikaya N (2003) Artificial neural networks for calculating the input resistance of circular microstrip antennas. Microwave Opt Technol Lett 37:107–111CrossRef Guney K, Sarikaya N (2003) Artificial neural networks for calculating the input resistance of circular microstrip antennas. Microwave Opt Technol Lett 37:107–111CrossRef
22.
Zurück zum Zitat Maybell MJ, Simon PS (1993) Pyramidal horn gain calculation with improved accuracy. IEEE Trans Antennas Propagat 41:884–889CrossRef Maybell MJ, Simon PS (1993) Pyramidal horn gain calculation with improved accuracy. IEEE Trans Antennas Propagat 41:884–889CrossRef
23.
Zurück zum Zitat Schelkunoff SA (1943) Electromagnetic waves. Van Nostrand Rheinhold, New York Schelkunoff SA (1943) Electromagnetic waves. Van Nostrand Rheinhold, New York
24.
Zurück zum Zitat Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. Q Appl Math 2:164–168 Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. Q Appl Math 2:164–168
25.
Zurück zum Zitat Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441 Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441
26.
Zurück zum Zitat Hagan MT, Menhaj M (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Networks 5:989–993CrossRef Hagan MT, Menhaj M (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Networks 5:989–993CrossRef
27.
Zurück zum Zitat Standardization of Electronic Industry Association (EIA) (www.eia.org) and Standardization of International Electrotechnical Commission (IEC) (www.iec.ch) Standardization of Electronic Industry Association (EIA) (www.eia.org) and Standardization of International Electrotechnical Commission (IEC) (www.iec.ch)
Metadaten
Titel
Artificial neural networks for the narrow aperture dimension calculation of optimum gain pyramidal horns
verfasst von
K. Guney
N. Sarikaya
Publikationsdatum
01.02.2004
Verlag
Springer-Verlag
Erschienen in
Electrical Engineering / Ausgabe 3/2004
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-003-0197-z

Weitere Artikel der Ausgabe 3/2004

Electrical Engineering 3/2004 Zur Ausgabe

Neuer Inhalt