Skip to main content
Erschienen in: Electrical Engineering 2/2018

15.05.2017 | Original Paper

Design, analysis, and control of in-wheel switched reluctance motor for electric vehicles

verfasst von: Z. Omaç, M. Polat, E. Öksüztepe, M. Yıldırım, O. Yakut, H. Eren, M. Kaya, H. Kürüm

Erschienen in: Electrical Engineering | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Estimation of dimension parameters for an electric machine has great importance before assembling on production line. As a matter of fact, researchers should find optimum solution once they decide to perform analytical design of an electric machine. In this study, we have tried to find dimensional and electrical parameters via derived mathematical equations for in-wheel switched reluctance motor (IW-SRM), and the motor has been manufactured. Moreover, an experimental setup is designed, and the speed and torque control of IW-SRM is carried out. The motor tests including both standstill and running test are performed by using the experimental setup. Initial size parameters are intuitively provided as motor analysis is conducted by software package. Then, numerous trials are examined to get optimum results. In fact, this motor is employed by an electric vehicle whose design is ongoing. Therefore, optimum motor parameters for required base speed and torque have been estimated by solving generated equations for IW-SRM with 18/12 poles via MATLAB. Considering parameters estimated, analysis of IW-SRM has been performed by Ansoft Maxwell 15.0 Software Package based on 3D finite element method (3D-FEM). Consequently, the estimated parameters have been validated by the results of Maxwell 3D FEM. Experimental results of the motor manufactured are obtained via the motor driver designed; also have been validated by Maxwell 3D.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Naayagi RT, Kamaraj V (2005) A comparative study of shape optimization of SRM using genetic algorithm and simulated annealing. In: Annual IEEE INDICON, pp 596–599. doi:10.1109/INDCON.2005.1590241 Naayagi RT, Kamaraj V (2005) A comparative study of shape optimization of SRM using genetic algorithm and simulated annealing. In: Annual IEEE INDICON, pp 596–599. doi:10.​1109/​INDCON.​2005.​1590241
2.
Zurück zum Zitat Senol I, Gorgun H, Aydeniz MG (1998) Comparison and determination the electrical motors which are used in electrical transportation systems. In: IEEE 9th mediterranean electrotechnical conference, vol 2, pp 888–891. doi:10.1109/MELCON.1998.699355 Senol I, Gorgun H, Aydeniz MG (1998) Comparison and determination the electrical motors which are used in electrical transportation systems. In: IEEE 9th mediterranean electrotechnical conference, vol 2, pp 888–891. doi:10.​1109/​MELCON.​1998.​699355
3.
Zurück zum Zitat Watanabe K, Aida S, Komatsuzaki A, Miki I (2007) Driving force characteristics of 40 kW switched reluctance motor for electric vehicle. In: IEEE international conference on electrical machines and systems, 8–11 October 2007, pp 1894–1898 Watanabe K, Aida S, Komatsuzaki A, Miki I (2007) Driving force characteristics of 40 kW switched reluctance motor for electric vehicle. In: IEEE international conference on electrical machines and systems, 8–11 October 2007, pp 1894–1898
4.
Zurück zum Zitat Aida S, Komatsuzaki A, Miki I (2008) Basic characteristics of electric vehicle using 40 kW switched reluctance motor. In: IEEE international conference on electrical machines and systems, pp 3358–3361 Aida S, Komatsuzaki A, Miki I (2008) Basic characteristics of electric vehicle using 40 kW switched reluctance motor. In: IEEE international conference on electrical machines and systems, pp 3358–3361
5.
Zurück zum Zitat Lin J, Cheng EKW, Zhang Z, Xue X (2009) Experimental investigation of in-wheel switched reluctance motor driving system for future electric vehicles. In: IEEE 3rd international conference on power electronics systems and applications, pp 1–6 Lin J, Cheng EKW, Zhang Z, Xue X (2009) Experimental investigation of in-wheel switched reluctance motor driving system for future electric vehicles. In: IEEE 3rd international conference on power electronics systems and applications, pp 1–6
6.
Zurück zum Zitat Yıldırım M, Polat M, Kürüm H (2014) A survey on comparison of electric motor types and drives used for electric vehicles. In: IEEE 16th international power electronics and motion control conference and exposition, September 2014, pp 218–223. doi:10.1109/EPEPEMC.2014.6980715 Yıldırım M, Polat M, Kürüm H (2014) A survey on comparison of electric motor types and drives used for electric vehicles. In: IEEE 16th international power electronics and motion control conference and exposition, September 2014, pp 218–223. doi:10.​1109/​EPEPEMC.​2014.​6980715
7.
Zurück zum Zitat Krishnan R (2001) Switched reluctance motor drives: modeling, simulation, analysis, design, and applications. CRC Press, Boca RatonCrossRef Krishnan R (2001) Switched reluctance motor drives: modeling, simulation, analysis, design, and applications. CRC Press, Boca RatonCrossRef
9.
Zurück zum Zitat Miller TJE, Eastham TJ (2001) Electronic control of switched reluctance machines. Newnes, Oxford Miller TJE, Eastham TJ (2001) Electronic control of switched reluctance machines. Newnes, Oxford
10.
Zurück zum Zitat Yıldırım M, Polat M, Öksüztepe E, Omaç Z, Yakut O, Eren E, Kürüm H (2014) Designing in-wheel switched reluctance motor for electric vehicles. In: IEEE 16th international power electronics and motion control conference and exposition, pp 793–798. doi:10.1109/EPEPEMC.2014.6980594 Yıldırım M, Polat M, Öksüztepe E, Omaç Z, Yakut O, Eren E, Kürüm H (2014) Designing in-wheel switched reluctance motor for electric vehicles. In: IEEE 16th international power electronics and motion control conference and exposition, pp 793–798. doi:10.​1109/​EPEPEMC.​2014.​6980594
12.
Zurück zum Zitat Makwana JA, Agarwal P, Srivastava SP (2011) Novel simulation approach to analyses the performance of in-wheel SRM for an electrical vehicle. In: IEEE international conference on energy, automation, and signal, pp 1–5. doi:10.1109/ICEAS.2011.6147103 Makwana JA, Agarwal P, Srivastava SP (2011) Novel simulation approach to analyses the performance of in-wheel SRM for an electrical vehicle. In: IEEE international conference on energy, automation, and signal, pp 1–5. doi:10.​1109/​ICEAS.​2011.​6147103
13.
Zurück zum Zitat De Santiago J, Bernhoff H, Ekergard B, Eriksson S, Ferhatovic S, Waters R, Leijon M (2012) Electrical motor drivelines in commercial all-electric vehicles: a review. IEEE Trans Veh Technol 61(2):475–484. doi:10.1109/TVT.2011.2177873 CrossRef De Santiago J, Bernhoff H, Ekergard B, Eriksson S, Ferhatovic S, Waters R, Leijon M (2012) Electrical motor drivelines in commercial all-electric vehicles: a review. IEEE Trans Veh Technol 61(2):475–484. doi:10.​1109/​TVT.​2011.​2177873 CrossRef
14.
Zurück zum Zitat Xue XD, Cheng KWE, Cheung NC (2008) Selection of electric motor drivers for electrical vehicles. In: IEEE Australasian universities power engineering conference, pp 1–6 Xue XD, Cheng KWE, Cheung NC (2008) Selection of electric motor drivers for electrical vehicles. In: IEEE Australasian universities power engineering conference, pp 1–6
15.
Zurück zum Zitat Rahman KM, Fahimi B, Suresh G, Rajarathnam AV, Ehsani M (2000) Advantages of switched reluctance motor applications to EV and HEV: design and control issues. IEEE Trans Ind Appl 36(1):111–121. doi:10.1109/28.821805 CrossRef Rahman KM, Fahimi B, Suresh G, Rajarathnam AV, Ehsani M (2000) Advantages of switched reluctance motor applications to EV and HEV: design and control issues. IEEE Trans Ind Appl 36(1):111–121. doi:10.​1109/​28.​821805 CrossRef
16.
Zurück zum Zitat Omekanda AM (2013) Switched reluctance machines for EV and HEV propulsion: state-of-the-art. In: IEEE workshop on electrical machines design control and diagnosis, pp 70–74. doi:10.1109/WEMDCD.2013.6525166 Omekanda AM (2013) Switched reluctance machines for EV and HEV propulsion: state-of-the-art. In: IEEE workshop on electrical machines design control and diagnosis, pp 70–74. doi:10.​1109/​WEMDCD.​2013.​6525166
17.
Zurück zum Zitat Gao Y, McCulloch MD (2012) A review of high power density switched reluctance machines suitable for automotive applications. In: IEEE XXth international conference on electrical machines, pp 2610–2614. doi:10.1109/ICElMach.2012.6350253 Gao Y, McCulloch MD (2012) A review of high power density switched reluctance machines suitable for automotive applications. In: IEEE XXth international conference on electrical machines, pp 2610–2614. doi:10.​1109/​ICElMach.​2012.​6350253
18.
Zurück zum Zitat Lebsir A, Bentounsi A, Rebbah R, Belakehal S (2013) Compared applications of permanent magnet and switched reluctance machine: state of the art. In: IEEE 2013 fourth international conference on power engineering, energy and electrical drives, May 2013, pp 439–443. doi:10.1109/PowerEng.2013.6635647 Lebsir A, Bentounsi A, Rebbah R, Belakehal S (2013) Compared applications of permanent magnet and switched reluctance machine: state of the art. In: IEEE 2013 fourth international conference on power engineering, energy and electrical drives, May 2013, pp 439–443. doi:10.​1109/​PowerEng.​2013.​6635647
19.
Zurück zum Zitat Koibuchi K, Ohno T, Sawa K (1997) A basic study for optimal design of switched reluctance motor by finite element method. IEEE Trans Magn 33(2):2077–2080. doi:10.1109/20.582726 CrossRef Koibuchi K, Ohno T, Sawa K (1997) A basic study for optimal design of switched reluctance motor by finite element method. IEEE Trans Magn 33(2):2077–2080. doi:10.​1109/​20.​582726 CrossRef
20.
Zurück zum Zitat Faiz J, Shahgholian G, Ghazizadeh H (2010) Analysis of dynamic behavior of switched reluctance motor-design parameters effects. In: IEEE 2010-2010 15th mediterranean electrotechnical conference, pp 532–537. doi:10.1109/MELCON.2010.5476036 Faiz J, Shahgholian G, Ghazizadeh H (2010) Analysis of dynamic behavior of switched reluctance motor-design parameters effects. In: IEEE 2010-2010 15th mediterranean electrotechnical conference, pp 532–537. doi:10.​1109/​MELCON.​2010.​5476036
21.
Zurück zum Zitat Cosovic M, Smaka S, Salihbegovic I, Masic S (2012) Design optimization of 8/14 switched reluctance machine for electric vehicle. In: IEEE XXth international conference on electrical machines, pp 2654–2659. doi:10.1109/ICElMach.2012.6350260 Cosovic M, Smaka S, Salihbegovic I, Masic S (2012) Design optimization of 8/14 switched reluctance machine for electric vehicle. In: IEEE XXth international conference on electrical machines, pp 2654–2659. doi:10.​1109/​ICElMach.​2012.​6350260
22.
Zurück zum Zitat Tang Y, Kline JA (1996) Modeling and design optimization of switched reluctance machine by boundary element analysis and simulation. IEEE Trans Energy Convers 11(4):673–680. doi:10.1109/60.556360 CrossRef Tang Y, Kline JA (1996) Modeling and design optimization of switched reluctance machine by boundary element analysis and simulation. IEEE Trans Energy Convers 11(4):673–680. doi:10.​1109/​60.​556360 CrossRef
23.
Zurück zum Zitat Vijayakumar K, Karthikeyan R, Paramasivam S, Arumugam R, Srinivas KN (2008) Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review. IEEE Trans Magn 44(12):4605–4617. doi:10.1109/TMAG.2008.2003334 CrossRef Vijayakumar K, Karthikeyan R, Paramasivam S, Arumugam R, Srinivas KN (2008) Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review. IEEE Trans Magn 44(12):4605–4617. doi:10.​1109/​TMAG.​2008.​2003334 CrossRef
24.
Zurück zum Zitat Nikam SP, Shambhu S, Fernandes BG (2013) Design of switched reluctance motor based electric drive-train for intra campus two wheeler. In: IEEE 2013-39th annual conference, pp 4612–4617. doi:10.1109/IECON.2013.6699879 Nikam SP, Shambhu S, Fernandes BG (2013) Design of switched reluctance motor based electric drive-train for intra campus two wheeler. In: IEEE 2013-39th annual conference, pp 4612–4617. doi:10.​1109/​IECON.​2013.​6699879
26.
Zurück zum Zitat Ohyama K, Nakazawa Y, Nozuka K, Fujii H, Uehara H, Hyakutate Y (2013) Design of high efficient switched reluctance motor for electric vehicle. In: IEEE industrial electronics society 2013-39th annual conference, pp 7325–7330. doi:10.1109/IECON.2013.6700351 Ohyama K, Nakazawa Y, Nozuka K, Fujii H, Uehara H, Hyakutate Y (2013) Design of high efficient switched reluctance motor for electric vehicle. In: IEEE industrial electronics society 2013-39th annual conference, pp 7325–7330. doi:10.​1109/​IECON.​2013.​6700351
27.
Zurück zum Zitat Omaç Z, Kürüm H, Selçuk AH (2007) Design, analysis and control of a switched reluctance motor having 18/12 poles. Fırat Univ Sci Eng J 3(19):339–346 Omaç Z, Kürüm H, Selçuk AH (2007) Design, analysis and control of a switched reluctance motor having 18/12 poles. Fırat Univ Sci Eng J 3(19):339–346
29.
Zurück zum Zitat Lin J, Cheng EKW, Zhang Z, Xue X (2009) Experimental investigation of in-wheel switched reluctance motor driving system for future electric vehicles. In: IEEE 3rd international conference on power electronics systems and applications, May 2006, pp 1–6 Lin J, Cheng EKW, Zhang Z, Xue X (2009) Experimental investigation of in-wheel switched reluctance motor driving system for future electric vehicles. In: IEEE 3rd international conference on power electronics systems and applications, May 2006, pp 1–6
30.
Zurück zum Zitat Yaling W, Yanliang X, Yufang W, Yun Z (2011) Outer-rotor switched reluctance motor and its control system used in electric vehicles. In: IEEE 2011 international conference on electrical machines and systems, August 2011, pp 1–4. doi:10.1109/ICEMS.2011.6073542 Yaling W, Yanliang X, Yufang W, Yun Z (2011) Outer-rotor switched reluctance motor and its control system used in electric vehicles. In: IEEE 2011 international conference on electrical machines and systems, August 2011, pp 1–4. doi:10.​1109/​ICEMS.​2011.​6073542
31.
Zurück zum Zitat NG TW, Cheng KWE, Xue XD (2009) Computation of the in-wheel switched reluctance motor inductance using finite element method. In: IEEE 3rd international conference on power electronics systems and applications, pp 1–4 NG TW, Cheng KWE, Xue XD (2009) Computation of the in-wheel switched reluctance motor inductance using finite element method. In: IEEE 3rd international conference on power electronics systems and applications, pp 1–4
32.
Zurück zum Zitat Makwana JA, Agarwal J, Srivastava SP (2011) Novel simulation approach to analyses the performance of in-wheel SRM for an electrical vehicle. In: IEEE 2011 international conference on energy, automation, and signal, pp 1–5. doi:10.1109/ICEAS.2011.6147103 Makwana JA, Agarwal J, Srivastava SP (2011) Novel simulation approach to analyses the performance of in-wheel SRM for an electrical vehicle. In: IEEE 2011 international conference on energy, automation, and signal, pp 1–5. doi:10.​1109/​ICEAS.​2011.​6147103
33.
Zurück zum Zitat Cakır K, Sabanovıc A (2006) In-wheel motor design for electric vehicles. In: 9th IEEE international workshop on advanced motion control, pp 613–618. doi:10.1109/AMC.2006.1631730 Cakır K, Sabanovıc A (2006) In-wheel motor design for electric vehicles. In: 9th IEEE international workshop on advanced motion control, pp 613–618. doi:10.​1109/​AMC.​2006.​1631730
34.
Zurück zum Zitat Cinar MA, Kuyumcu FE (2007) Design and drives simulation of an in-wheel switched reluctance motor for electric vehicle applications. In: IEEE international electric machines and drives conference vol 1, pp 50–54. doi:10.1109/IEMDC.2007.383551 Cinar MA, Kuyumcu FE (2007) Design and drives simulation of an in-wheel switched reluctance motor for electric vehicle applications. In: IEEE international electric machines and drives conference vol 1, pp 50–54. doi:10.​1109/​IEMDC.​2007.​383551
35.
Zurück zum Zitat Xue XD, Cheng KWE, Ng TW, Cheung NC (2010) Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles. IEEE Trans Ind Electron 57(9):2980–2987. doi:10.1109/TIE.2010.2051390 Xue XD, Cheng KWE, Ng TW, Cheung NC (2010) Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles. IEEE Trans Ind Electron 57(9):2980–2987. doi:10.​1109/​TIE.​2010.​2051390
36.
Zurück zum Zitat Labak A, Kar NC (2012) Outer rotor switched reluctance motor design for in-wheel drive of electric bus applications. In: IEEE XXth international conference on electrical machines, pp 418–423. doi:10.1109/ICElMach.2012.6349901 Labak A, Kar NC (2012) Outer rotor switched reluctance motor design for in-wheel drive of electric bus applications. In: IEEE XXth international conference on electrical machines, pp 418–423. doi:10.​1109/​ICElMach.​2012.​6349901
37.
Zurück zum Zitat Ahmad MZ, Sulaiman E, Haron ZA, Kosaka T (2013) Design improvement of a new outer-rotor hybrid excitation flux switching motor for in-wheel drive EV. In: IEEE 7th international power engineering and optimization conference, June 2013, pp 298–303. doi:10.1109/PEOCO.2013.6564561 Ahmad MZ, Sulaiman E, Haron ZA, Kosaka T (2013) Design improvement of a new outer-rotor hybrid excitation flux switching motor for in-wheel drive EV. In: IEEE 7th international power engineering and optimization conference, June 2013, pp 298–303. doi:10.​1109/​PEOCO.​2013.​6564561
38.
Zurück zum Zitat Polat M, Kürüm H (2011) Analytic design of dimensional at submersible pump-type switched reluctance motor with 8/6 poles. e-Journal New World Sci Acad 6(1):359–378 Polat M, Kürüm H (2011) Analytic design of dimensional at submersible pump-type switched reluctance motor with 8/6 poles. e-Journal New World Sci Acad 6(1):359–378
Metadaten
Titel
Design, analysis, and control of in-wheel switched reluctance motor for electric vehicles
verfasst von
Z. Omaç
M. Polat
E. Öksüztepe
M. Yıldırım
O. Yakut
H. Eren
M. Kaya
H. Kürüm
Publikationsdatum
15.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2018
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-017-0541-3

Weitere Artikel der Ausgabe 2/2018

Electrical Engineering 2/2018 Zur Ausgabe

Neuer Inhalt