Skip to main content
Erschienen in: Polymer Bulletin 4/2017

13.08.2016 | Original Paper

The reinforcing mechanism study of carbon nanotube in the NR matrix

verfasst von: Kun Yang, Tingting Zhang, Changcai Zhu, Ping Zhang, Shugao Zhao, Laina Guo

Erschienen in: Polymer Bulletin | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The reinforcement mechanism of CNT in rubber matrix is an important and interesting subject. In this paper, carboxyled multi-walled carbon nanotubes (CNT) were used to prepare natural rubber (NR) nanocomposites (CNT/NR). CNT/NR composites were formed by mechanical blending method and the properties such as tensile strength, tensile modulus, tear strength, elongation at break and hardness were studied. The results of Mechanical property show that the physical property of NR filled with 9 phr CNT (CNT/NR-9) is similar to that with 30 phr carbon black (CB) (CB/NR-30). In addition, the dispersion and interaction between CNT and NR were also studied by scanning electron microscope, transmission electron microscope, dynamic mechanical testing system and bound-rubber analysis. According to the results, CNT is considered to exhibit random orientations and form “string bag” structure in rubber matrix and the reinforcement mechanism of CNT is different to that of CB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
2.
Zurück zum Zitat Saito R, Dresselhaus G, Dresselhaus MS (1999) Physical properties of carbon nanotubes. Imperial College Press, London Saito R, Dresselhaus G, Dresselhaus MS (1999) Physical properties of carbon nanotubes. Imperial College Press, London
3.
Zurück zum Zitat Yan YH, Chan P, Mary B, Zhang Q (2007) Advances in carbon nanotube assembly. Small 3:24–42CrossRef Yan YH, Chan P, Mary B, Zhang Q (2007) Advances in carbon nanotube assembly. Small 3:24–42CrossRef
4.
Zurück zum Zitat Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283:62–69CrossRef Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283:62–69CrossRef
5.
Zurück zum Zitat Biercuk MJ, Laguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fisher JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRef Biercuk MJ, Laguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fisher JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRef
6.
Zurück zum Zitat Dai HJ, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526CrossRef Dai HJ, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526CrossRef
7.
Zurück zum Zitat Frank S, Poncharal P, Wang ZL, Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746CrossRef Frank S, Poncharal P, Wang ZL, Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746CrossRef
8.
Zurück zum Zitat Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79:1172–1174CrossRef Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79:1172–1174CrossRef
9.
Zurück zum Zitat Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
10.
Zurück zum Zitat Poncharal P, Wang ZL, Ugarte D, Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283:1513–1516CrossRef Poncharal P, Wang ZL, Ugarte D, Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283:1513–1516CrossRef
11.
Zurück zum Zitat Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef
12.
Zurück zum Zitat Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef
13.
Zurück zum Zitat Li F, Cheng HM, Bai S, Su G, Dresselhaus MS (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77:3161–3163CrossRef Li F, Cheng HM, Bai S, Su G, Dresselhaus MS (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77:3161–3163CrossRef
14.
Zurück zum Zitat Busfield JJC, Deeprasertkul C, Thomas AG (2000) The effect of liquids on the dynamic properties of carbon black filled natural rubber as a function of pre-strain. Polymer 41(26):9219–9225CrossRef Busfield JJC, Deeprasertkul C, Thomas AG (2000) The effect of liquids on the dynamic properties of carbon black filled natural rubber as a function of pre-strain. Polymer 41(26):9219–9225CrossRef
15.
Zurück zum Zitat Bhattacharyya S, Sinturel C, Bahloul O, Saboungi ML, Thomas S, Salvetat JP (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46(7):1037–1045CrossRef Bhattacharyya S, Sinturel C, Bahloul O, Saboungi ML, Thomas S, Salvetat JP (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46(7):1037–1045CrossRef
16.
Zurück zum Zitat Fakhru’l-Razi A, Atieh MA, Girun N, Chuah TG, El-Sadig M, Biak DRA (2006) Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber. Compos Struct 75:496–500CrossRef Fakhru’l-Razi A, Atieh MA, Girun N, Chuah TG, El-Sadig M, Biak DRA (2006) Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber. Compos Struct 75:496–500CrossRef
17.
Zurück zum Zitat Weng GS, Huang GS, Qu LL, Nie YJ, Wu JR (2010) Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. J Phys Chem B 114(21):7179–7188CrossRef Weng GS, Huang GS, Qu LL, Nie YJ, Wu JR (2010) Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. J Phys Chem B 114(21):7179–7188CrossRef
18.
Zurück zum Zitat Bokobza L, Rahmani M, Belin C, Bruneel JL, Bounia NE (2008) Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. J Phys Chem B 46(18):1939–1951 Bokobza L, Rahmani M, Belin C, Bruneel JL, Bounia NE (2008) Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. J Phys Chem B 46(18):1939–1951
19.
Zurück zum Zitat Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687CrossRef Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687CrossRef
20.
Zurück zum Zitat Li MC, Ge X, Cho UR (2013) Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber. Macromol Res 21(5):519–528CrossRef Li MC, Ge X, Cho UR (2013) Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber. Macromol Res 21(5):519–528CrossRef
21.
Zurück zum Zitat Li MC, Zhang YH, Cho UR (2014) Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: influence of particle size and loading. Mater Design 63:565–574CrossRef Li MC, Zhang YH, Cho UR (2014) Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: influence of particle size and loading. Mater Design 63:565–574CrossRef
22.
Zurück zum Zitat Ge X, Li MC, Cho UR (2015) Novel one-step synthesis of acrylonitrile butadiene rubber/bentonite nanocomposites with (3-mercaptopropyl)trimethoxysilane as a compatilizer. Polym Compos 36(9):1693–1702CrossRef Ge X, Li MC, Cho UR (2015) Novel one-step synthesis of acrylonitrile butadiene rubber/bentonite nanocomposites with (3-mercaptopropyl)trimethoxysilane as a compatilizer. Polym Compos 36(9):1693–1702CrossRef
23.
Zurück zum Zitat Oberdisse J, Harrak AE, Carrot G, Jestin J, Boue F (2005) Structure and rheological properties of soft-hard nanocomposites: influence of aggregation and interfacial modification. Polymer 46(17):6695–6705CrossRef Oberdisse J, Harrak AE, Carrot G, Jestin J, Boue F (2005) Structure and rheological properties of soft-hard nanocomposites: influence of aggregation and interfacial modification. Polymer 46(17):6695–6705CrossRef
24.
Zurück zum Zitat Kohjiya S, Katoh A, Suda T, Shimanuki J, Ikeda Y (2006) Visualisation of carbon black networks in rubbery matrix by skeletonisation of 3D-TEM image. Polymer 47(10):3298–3301CrossRef Kohjiya S, Katoh A, Suda T, Shimanuki J, Ikeda Y (2006) Visualisation of carbon black networks in rubbery matrix by skeletonisation of 3D-TEM image. Polymer 47(10):3298–3301CrossRef
25.
Zurück zum Zitat Kohjiya S, Katoh A, Shimanuki J, Hasegawa T, Ikeda Y (2005) Three dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography. Polymer 46(12):4440–4446CrossRef Kohjiya S, Katoh A, Shimanuki J, Hasegawa T, Ikeda Y (2005) Three dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography. Polymer 46(12):4440–4446CrossRef
26.
Zurück zum Zitat Guido R, Margherta M, Stefano E (2006) Computational experiments on filled rubber viscoelasticity: what is the role of particle-particle interactions? Macromolecules 39(19):6744–6751CrossRef Guido R, Margherta M, Stefano E (2006) Computational experiments on filled rubber viscoelasticity: what is the role of particle-particle interactions? Macromolecules 39(19):6744–6751CrossRef
27.
Zurück zum Zitat Frohlich J, Niedermeier W, Luginsland HD (2005) The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos Part A Appl S 36(4):449–460CrossRef Frohlich J, Niedermeier W, Luginsland HD (2005) The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos Part A Appl S 36(4):449–460CrossRef
28.
Zurück zum Zitat Peng CC, Gopfert A, Drechsler M, Abetz V (2005) “Smart” silica-rubber nanocomposites in virtue of hydrogen bonding interaction. Polym Adv Technol 16:770–782CrossRef Peng CC, Gopfert A, Drechsler M, Abetz V (2005) “Smart” silica-rubber nanocomposites in virtue of hydrogen bonding interaction. Polym Adv Technol 16:770–782CrossRef
29.
Zurück zum Zitat Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6(19):57–63CrossRef Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6(19):57–63CrossRef
30.
Zurück zum Zitat Payne AR (1965) Effect of dispersion on the dynamic properties of filler-loaded rubbers. J Appl Polym Sci 6(6):2273–2284CrossRef Payne AR (1965) Effect of dispersion on the dynamic properties of filler-loaded rubbers. J Appl Polym Sci 6(6):2273–2284CrossRef
31.
Zurück zum Zitat Gauthier C, Reynaud E, Vassoile R, Ladouce-Stelandre L (2004) Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber. Polymer 45:2761–2771CrossRef Gauthier C, Reynaud E, Vassoile R, Ladouce-Stelandre L (2004) Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber. Polymer 45:2761–2771CrossRef
32.
Zurück zum Zitat Gan SC, Wu ZL, Xu HL, Song YH, Zheng Q (2016) Viscoelastic behaviors of carbon black gel extracted from highly filled natural rubber compounds: insights into the payne effect. Macromoleculars 49:1454–1463CrossRef Gan SC, Wu ZL, Xu HL, Song YH, Zheng Q (2016) Viscoelastic behaviors of carbon black gel extracted from highly filled natural rubber compounds: insights into the payne effect. Macromoleculars 49:1454–1463CrossRef
Metadaten
Titel
The reinforcing mechanism study of carbon nanotube in the NR matrix
verfasst von
Kun Yang
Tingting Zhang
Changcai Zhu
Ping Zhang
Shugao Zhao
Laina Guo
Publikationsdatum
13.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 4/2017
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1755-7

Weitere Artikel der Ausgabe 4/2017

Polymer Bulletin 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.