Skip to main content
Erschienen in: Colloid and Polymer Science 15-16/2011

01.10.2011 | Original Contribution

Enhancement effect of filler network on isotactic polypropylene/carbon black composite melts

verfasst von: Shilin Huang, Zhengying Liu, Chaolu Yin, Yu Wang, Yongjuan Gao, Chen Chen, Mingbo Yang

Erschienen in: Colloid and Polymer Science | Ausgabe 15-16/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The linear viscoelastic behavior of the isotactic polypropylene/carbon black composite melt in which the filler particles can aggregate and form a filler network is investigated. With a higher filler loading the enhancement effect of the filler particles on the composite melt becomes more significant, which can be explained by the filler–polymer interaction and the hydrodynamic effect. When the filler network appears in the composite melt, the storage modulus exhibits another increasing mode, revealing that the percolating filler network has an additional enhancement effect on the composite melt. This is explained in a microscopic view of point with the consideration of the polymer shells on the filler particles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jouault N, Vallat P, Dalmas F, Said S, Jestin J, Boue F (2009) Well-dispersed fractal aggregates as filler in polymer–silica nanocomposites: long-range effects in rheology. Macromolecules 42:2031–2040CrossRef Jouault N, Vallat P, Dalmas F, Said S, Jestin J, Boue F (2009) Well-dispersed fractal aggregates as filler in polymer–silica nanocomposites: long-range effects in rheology. Macromolecules 42:2031–2040CrossRef
2.
Zurück zum Zitat Xu L, Nakajima H, Manias E, Krishnamoorti R (2009) Tailored nanocomposites of polypropylene with layered silicates. Macromolecules 42:3795–3803CrossRef Xu L, Nakajima H, Manias E, Krishnamoorti R (2009) Tailored nanocomposites of polypropylene with layered silicates. Macromolecules 42:3795–3803CrossRef
3.
Zurück zum Zitat Anderson BJ, Zukoski CF (2009) Rheology and microstructure of entangled polymer nanocomposite melts. Macromolecules 42:8370–8384CrossRef Anderson BJ, Zukoski CF (2009) Rheology and microstructure of entangled polymer nanocomposite melts. Macromolecules 42:8370–8384CrossRef
4.
Zurück zum Zitat Thomin JD, Keblinski P, Kmnar SK (2008) Network effects on the nonlinear rheology of polymer nanocomposites macromolecules 41:5988–5991 Thomin JD, Keblinski P, Kmnar SK (2008) Network effects on the nonlinear rheology of polymer nanocomposites macromolecules 41:5988–5991
5.
Zurück zum Zitat Wang XL, Sun PC, Xue G, Winter HH (2010) Late-state ripening dynamics of a polymer/clay nanocomposite. Macromolecules 43:1901–1906CrossRef Wang XL, Sun PC, Xue G, Winter HH (2010) Late-state ripening dynamics of a polymer/clay nanocomposite. Macromolecules 43:1901–1906CrossRef
6.
Zurück zum Zitat Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Interface Sci 6:464–470CrossRef Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Interface Sci 6:464–470CrossRef
7.
Zurück zum Zitat Sternstein SS, Zhu AJ (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273CrossRef Sternstein SS, Zhu AJ (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273CrossRef
8.
Zurück zum Zitat Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442CrossRef Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442CrossRef
9.
Zurück zum Zitat Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196CrossRef Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196CrossRef
10.
Zurück zum Zitat Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57–63CrossRef Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57–63CrossRef
11.
Zurück zum Zitat Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102CrossRef Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102CrossRef
12.
Zurück zum Zitat Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852–858CrossRef Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852–858CrossRef
13.
Zurück zum Zitat Gusev AA (2006) Micromechanical mechanism of reinforcement and losses in filled rubbers. Macromolecules 39:5960–5962CrossRef Gusev AA (2006) Micromechanical mechanism of reinforcement and losses in filled rubbers. Macromolecules 39:5960–5962CrossRef
14.
Zurück zum Zitat Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462CrossRef Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462CrossRef
15.
Zurück zum Zitat Meier JG, Kluppel M (2008) Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol Mater Eng 293:12–38CrossRef Meier JG, Kluppel M (2008) Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol Mater Eng 293:12–38CrossRef
16.
Zurück zum Zitat Wang K, Liang S, Deng J, Yang H, Zhang Q, Fu Q, Dong X, Wang D, Han CC (2006) The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites. Polymer 47:7131–7144CrossRef Wang K, Liang S, Deng J, Yang H, Zhang Q, Fu Q, Dong X, Wang D, Han CC (2006) The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites. Polymer 47:7131–7144CrossRef
17.
Zurück zum Zitat Pryamitsyn V, Ganesan V (2006) Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules 39:844–856CrossRef Pryamitsyn V, Ganesan V (2006) Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules 39:844–856CrossRef
18.
Zurück zum Zitat Sarvestani AS, Picu CR (2004) Network model for the viscoelastic behavior of polymer nanocomposites. Polymer 45:7779–7790CrossRef Sarvestani AS, Picu CR (2004) Network model for the viscoelastic behavior of polymer nanocomposites. Polymer 45:7779–7790CrossRef
19.
Zurück zum Zitat Heinrich G, Kluppel M, Vilgis TA (2002) Reinforcement of elastomers. Curr Opin Colloid Interface Sci 6:195–203 Heinrich G, Kluppel M, Vilgis TA (2002) Reinforcement of elastomers. Curr Opin Colloid Interface Sci 6:195–203
20.
Zurück zum Zitat Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055CrossRef Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055CrossRef
21.
Zurück zum Zitat Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870CrossRef Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870CrossRef
22.
Zurück zum Zitat Song YH, Zheng Q (2010) Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer 51:3262–3268CrossRef Song YH, Zheng Q (2010) Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer 51:3262–3268CrossRef
23.
Zurück zum Zitat Litvinov VM, Steeman PAM (1999) EPDM–carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 32:8476–8490CrossRef Litvinov VM, Steeman PAM (1999) EPDM–carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 32:8476–8490CrossRef
24.
Zurück zum Zitat Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35:9756–9762CrossRef Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35:9756–9762CrossRef
25.
Zurück zum Zitat Frohlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part A-Appl Sci Manuf 36:449–460CrossRef Frohlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part A-Appl Sci Manuf 36:449–460CrossRef
26.
Zurück zum Zitat Kayatin MJ, Davis VA (2009) Viscoelasticity and shear stability of single-walled carbon nanotube/unsaturated polyester resin dispersions. Macromolecules 42:6624–6632CrossRef Kayatin MJ, Davis VA (2009) Viscoelasticity and shear stability of single-walled carbon nanotube/unsaturated polyester resin dispersions. Macromolecules 42:6624–6632CrossRef
27.
Zurück zum Zitat Wu G, Lin J, Zheng Q, Zhang M (2006) Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene. Polymer 47:2442–2447CrossRef Wu G, Lin J, Zheng Q, Zhang M (2006) Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene. Polymer 47:2442–2447CrossRef
28.
Zurück zum Zitat Wu G, Zheng Q (2004) Estimation of the agglomeration structure for conductive particles and fiber-filled high-density polyethylene through dynamic rheological measurements. J Polym Sci Part B-Polym Phys 42:1199–1205CrossRef Wu G, Zheng Q (2004) Estimation of the agglomeration structure for conductive particles and fiber-filled high-density polyethylene through dynamic rheological measurements. J Polym Sci Part B-Polym Phys 42:1199–1205CrossRef
29.
Zurück zum Zitat Wu GZ, Asai S, Zhang C, Miura T, Sumita M (2000) A delay of percolation time in carbon-black-filled conductive polymer composites. J Appl Phys 88:1480–1487CrossRef Wu GZ, Asai S, Zhang C, Miura T, Sumita M (2000) A delay of percolation time in carbon-black-filled conductive polymer composites. J Appl Phys 88:1480–1487CrossRef
30.
Zurück zum Zitat Larson RG (1999) The structure and rheology of complex fluids. New York, Oxford (Chapter 7) Larson RG (1999) The structure and rheology of complex fluids. New York, Oxford (Chapter 7)
31.
Zurück zum Zitat Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51:1119–1122CrossRef Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51:1119–1122CrossRef
32.
Zurück zum Zitat Witten TA, Sander LM (1983) Diffusion-limited aggregation. Phys Rev B 27:5686–5697CrossRef Witten TA, Sander LM (1983) Diffusion-limited aggregation. Phys Rev B 27:5686–5697CrossRef
33.
Zurück zum Zitat Jullien R, Kolb M, Botet R (1984) Aggregation by kinetic clustering of clusters in dimensions d > 2. J Physique Lett 45:211–216CrossRef Jullien R, Kolb M, Botet R (1984) Aggregation by kinetic clustering of clusters in dimensions d > 2. J Physique Lett 45:211–216CrossRef
34.
Zurück zum Zitat Rwei SP, Ku FH, Cheng KC (2002) Dispersion of carbon black in a continuous phase: electrical, rheological, and morphological studies. Colloid Polym Sci 280:1110–1115CrossRef Rwei SP, Ku FH, Cheng KC (2002) Dispersion of carbon black in a continuous phase: electrical, rheological, and morphological studies. Colloid Polym Sci 280:1110–1115CrossRef
35.
Zurück zum Zitat Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polym Sci 134:165–234CrossRef Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polym Sci 134:165–234CrossRef
36.
Zurück zum Zitat Liu ZY, Yu RZ, Yang MB, Feng JM, Yang W, Yin B (2008) A novel approach in preparing polymer/nano-CaCO3 composites. Front Chem Eng China 2:115–122CrossRef Liu ZY, Yu RZ, Yang MB, Feng JM, Yang W, Yin B (2008) A novel approach in preparing polymer/nano-CaCO3 composites. Front Chem Eng China 2:115–122CrossRef
37.
Zurück zum Zitat Yin CL, Liu ZY, Yang W, Yang MB, Feng JM (2009) Crystallization and morphology of iPP/MWCNT prepared by compounding iPP melt with MWCNT aqueous suspension. Colloid Polym Sci 287:615–620CrossRef Yin CL, Liu ZY, Yang W, Yang MB, Feng JM (2009) Crystallization and morphology of iPP/MWCNT prepared by compounding iPP melt with MWCNT aqueous suspension. Colloid Polym Sci 287:615–620CrossRef
38.
Zurück zum Zitat Rieker TP, Hindermann-Bischoff M, Ehrburger-Dolle F (2000) Small-angle X-ray scattering study of the morphology of carbon black mass fractal aggregates in polymeric composites. Langmuir 16:5588–5592CrossRef Rieker TP, Hindermann-Bischoff M, Ehrburger-Dolle F (2000) Small-angle X-ray scattering study of the morphology of carbon black mass fractal aggregates in polymeric composites. Langmuir 16:5588–5592CrossRef
39.
Zurück zum Zitat Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym bull 25:265–271CrossRef Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym bull 25:265–271CrossRef
40.
Zurück zum Zitat Zhu ZY, Thompson T, Wang SQ, Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824CrossRef Zhu ZY, Thompson T, Wang SQ, Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824CrossRef
41.
Zurück zum Zitat Sherman RD, Middleman LM, Jacobs SM (1983) Electron transport processes in conductor-filled polymers. Polym Eng Sci 23:36–46CrossRef Sherman RD, Middleman LM, Jacobs SM (1983) Electron transport processes in conductor-filled polymers. Polym Eng Sci 23:36–46CrossRef
42.
Zurück zum Zitat Zou JF, Yu ZZ, Pan YX, Fang XP, Ou YC (2002) Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J Polym Sci Part B-Polym Phys 40:954–963CrossRef Zou JF, Yu ZZ, Pan YX, Fang XP, Ou YC (2002) Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J Polym Sci Part B-Polym Phys 40:954–963CrossRef
43.
Zurück zum Zitat Chambon F, Petrovic ZS, MacKnight WJ, Winter HH (1986) Rheology of model polyurethanes at the gel point. Macromolecules 19:2146–2149CrossRef Chambon F, Petrovic ZS, MacKnight WJ, Winter HH (1986) Rheology of model polyurethanes at the gel point. Macromolecules 19:2146–2149CrossRef
44.
Zurück zum Zitat Pogodina NV, Winter HH (1998) Polypropylene crystallization as a physical gelation process. Macromolecules 31:8164–8172CrossRef Pogodina NV, Winter HH (1998) Polypropylene crystallization as a physical gelation process. Macromolecules 31:8164–8172CrossRef
45.
Zurück zum Zitat De Rosa ME, Mours M, Winter HH (1997) The gel point as reference state: a simple kinetic model for crosslinking polybutadiene via hydrosilation. Polym Gels Netw 5:69–94CrossRef De Rosa ME, Mours M, Winter HH (1997) The gel point as reference state: a simple kinetic model for crosslinking polybutadiene via hydrosilation. Polym Gels Netw 5:69–94CrossRef
46.
Zurück zum Zitat Xu DH, Wang ZG, Douglas JF (2008) Influence of carbon nanotube aspect ratio on normat stress differences in isotactic polypropylene nanocomposite melts. Macromolecules 41:815–825CrossRef Xu DH, Wang ZG, Douglas JF (2008) Influence of carbon nanotube aspect ratio on normat stress differences in isotactic polypropylene nanocomposite melts. Macromolecules 41:815–825CrossRef
47.
Zurück zum Zitat Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40:7400–7406CrossRef Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40:7400–7406CrossRef
48.
Zurück zum Zitat Huang S, Liu Z, Yin C, Wang Y, Gao Y, Chen C, Yang M (2011) Dynamic electrical and rheological percolation in isotactic poly(propylene)/carbon black composites. Macromol Mater Eng 296: doi:10.1002/mame.201100150 Huang S, Liu Z, Yin C, Wang Y, Gao Y, Chen C, Yang M (2011) Dynamic electrical and rheological percolation in isotactic poly(propylene)/carbon black composites. Macromol Mater Eng 296: doi:10.​1002/​mame.​201100150
49.
Zurück zum Zitat Tadros TF (1996) Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv Colloid Interf Sci 68:97–200 Tadros TF (1996) Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv Colloid Interf Sci 68:97–200
Metadaten
Titel
Enhancement effect of filler network on isotactic polypropylene/carbon black composite melts
verfasst von
Shilin Huang
Zhengying Liu
Chaolu Yin
Yu Wang
Yongjuan Gao
Chen Chen
Mingbo Yang
Publikationsdatum
01.10.2011
Verlag
Springer-Verlag
Erschienen in
Colloid and Polymer Science / Ausgabe 15-16/2011
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-011-2489-6

Weitere Artikel der Ausgabe 15-16/2011

Colloid and Polymer Science 15-16/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.