Skip to main content
Erschienen in: Colloid and Polymer Science 1/2017

03.12.2016 | Original Contribution

Stabilizing silica nanoparticles in high saline water by using ionic surfactants for wettability alteration application

verfasst von: Reza Songolzadeh, Jamshid Moghadasi

Erschienen in: Colloid and Polymer Science | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wettability alteration is one of the main methods for increasing recovery of oil-wet reservoirs. Chemical modifiers like surfactants and nanoparticles can alter the wettability of a surface from strongly oil-wet to water-wet. Small size and high surface area of nanoparticles provide these materials to permeate through micrometer-sized rock pores and to alter their surface wettability. Therefore, many studies have focused on the use of nanoparticles in enhanced oil recovery (EOR). However, instability of these particles in high saline water limits their application at practical scale. In this work, the effects of two ionic surfactants (sodium dodecyl sulfate (SDS) and N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)) on the stability of nano-silica (SiO2) and gamma nano-alumina (γ-Al2O3) nanoparticles have been studied by measuring the zeta potential and the UV adsorption of some nanofluids. The effects of surfactant concentration and nanofluid salinity on the stabilizing performance of the surfactants have also been investigated. Based on surfactant head group and nanoparticle surface charges, two different mechanisms have been proposed to explain surfactant and nanoparticle adsorption behavior. Finally, the effect of stabilized silica-based nanofluids on oil-brine interfacial tension (IFT) and the wettability of a carbonate rock has been explored. According to zeta potential and contact angle measurements, SDS increased the stability of SiO2 nanoparticles in highly concentrated electrolytes. Furthermore, it intensified the performance of nanoparticles in altering the wettability of a strongly oil-wet rock.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ju B, Fan T (2009) Experimental study and mathematical model of nanoparticle transport in porous media. Powder Technol 192(2):195–202CrossRef Ju B, Fan T (2009) Experimental study and mathematical model of nanoparticle transport in porous media. Powder Technol 192(2):195–202CrossRef
2.
Zurück zum Zitat Zhang H, Nikolov A, Wasan D (2014) Enhanced oil recovery (EOR) using nanoparticle dispersions: underlying mechanism and imbibition experiments. Energy Fuel 28(5):3002–3009CrossRef Zhang H, Nikolov A, Wasan D (2014) Enhanced oil recovery (EOR) using nanoparticle dispersions: underlying mechanism and imbibition experiments. Energy Fuel 28(5):3002–3009CrossRef
3.
Zurück zum Zitat Ogolo N, Olafuyi O, Onyekonwu M (2012) Enhanced oil recovery using nanoparticles. In: SPE Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers Ogolo N, Olafuyi O, Onyekonwu M (2012) Enhanced oil recovery using nanoparticles. In: SPE Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers
4.
Zurück zum Zitat Kiani S, Mansouri Zadeh M, Khodabakhshi S, Rashidi A, Moghadasi J (2016) Newly prepared Nano gamma alumina and its application in enhanced oil recovery: an approach to low-salinity waterflooding. Energy Fuel. doi:10.1021/acs.energyfuels.5b03008 Kiani S, Mansouri Zadeh M, Khodabakhshi S, Rashidi A, Moghadasi J (2016) Newly prepared Nano gamma alumina and its application in enhanced oil recovery: an approach to low-salinity waterflooding. Energy Fuel. doi:10.​1021/​acs.​energyfuels.​5b03008
5.
Zurück zum Zitat Mcelfresh PM, Wood M, Ector D (2012) Stabilizing nano particle dispersions in high salinity, high temperature downhole environments. In: SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers Mcelfresh PM, Wood M, Ector D (2012) Stabilizing nano particle dispersions in high salinity, high temperature downhole environments. In: SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers
6.
Zurück zum Zitat Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337(2):439–448CrossRef Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337(2):439–448CrossRef
7.
Zurück zum Zitat Ma X-k, Lee N-H, Oh H-J, Kim J-W, Rhee C-K, Park K-S, Kim S-J (2010) Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids Surf A Physicochem Eng Asp 358(1–3):172–176. doi:10.1016/j.colsurfa.2010.01.051 CrossRef Ma X-k, Lee N-H, Oh H-J, Kim J-W, Rhee C-K, Park K-S, Kim S-J (2010) Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids Surf A Physicochem Eng Asp 358(1–3):172–176. doi:10.​1016/​j.​colsurfa.​2010.​01.​051 CrossRef
8.
Zurück zum Zitat Ueno K, Inaba A, Kondoh M, Watanabe M (2008) Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids. Langmuir 24(10):5253–5259CrossRef Ueno K, Inaba A, Kondoh M, Watanabe M (2008) Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids. Langmuir 24(10):5253–5259CrossRef
9.
Zurück zum Zitat Jain N, Wang Y, Jones SK, Hawkett BS, Warr GG (2009) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6):4465–4472CrossRef Jain N, Wang Y, Jones SK, Hawkett BS, Warr GG (2009) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6):4465–4472CrossRef
10.
Zurück zum Zitat Lourenco C, Teixeira M, Simões S, Gaspar R (1996) Steric stabilization of nanoparticles: size and surface properties. Int J Pharm 138(1):1–12CrossRef Lourenco C, Teixeira M, Simões S, Gaspar R (1996) Steric stabilization of nanoparticles: size and surface properties. Int J Pharm 138(1):1–12CrossRef
11.
Zurück zum Zitat Sharma KP, Aswal VK, Kumaraswamy G (2010) Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions. J Phys Chem B 114(34):10986–10994CrossRef Sharma KP, Aswal VK, Kumaraswamy G (2010) Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions. J Phys Chem B 114(34):10986–10994CrossRef
12.
Zurück zum Zitat Ray D, Aswal V, Kohlbrecher J (2015) Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system. J Appl Phys 117(16):164310CrossRef Ray D, Aswal V, Kohlbrecher J (2015) Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system. J Appl Phys 117(16):164310CrossRef
13.
Zurück zum Zitat Kvitek L, Panáček A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834CrossRef Kvitek L, Panáček A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834CrossRef
14.
Zurück zum Zitat Zheng X, Zhu L, Yan A, Wang X, Xie Y (2003) Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. J Colloid Interface Sci 268(2):357–361CrossRef Zheng X, Zhu L, Yan A, Wang X, Xie Y (2003) Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. J Colloid Interface Sci 268(2):357–361CrossRef
15.
Zurück zum Zitat Ahualli S, Iglesias G, Wachter W, Dulle M, Minami D, Glatter O (2011) Adsorption of anionic and cationic surfactants on anionic colloids: supercharging and destabilization. Langmuir 27(15):9182–9192CrossRef Ahualli S, Iglesias G, Wachter W, Dulle M, Minami D, Glatter O (2011) Adsorption of anionic and cationic surfactants on anionic colloids: supercharging and destabilization. Langmuir 27(15):9182–9192CrossRef
16.
Zurück zum Zitat Iglesias GR, Wachter W, Ahualli S, Glatter O (2011) Interactions between large colloids and surfactants. Soft Matter 7(10):4619–4622CrossRef Iglesias GR, Wachter W, Ahualli S, Glatter O (2011) Interactions between large colloids and surfactants. Soft Matter 7(10):4619–4622CrossRef
17.
Zurück zum Zitat Nooney RI, White A, O’Mahony C, O’Connell C, Kelleher SM, Daniels S, McDonagh C (2015) Investigating the colloidal stability of fluorescent silica nanoparticles under isotonic conditions for biomedical applications. J Colloid Interface Sci 456:50–58CrossRef Nooney RI, White A, O’Mahony C, O’Connell C, Kelleher SM, Daniels S, McDonagh C (2015) Investigating the colloidal stability of fluorescent silica nanoparticles under isotonic conditions for biomedical applications. J Colloid Interface Sci 456:50–58CrossRef
18.
Zurück zum Zitat Lee L-H (1993) Roles of molecular interactions in adhesion, adsorption, contact angle and wettability. J Adhes Sci Technol 7(6):583–634CrossRef Lee L-H (1993) Roles of molecular interactions in adhesion, adsorption, contact angle and wettability. J Adhes Sci Technol 7(6):583–634CrossRef
19.
Zurück zum Zitat Derjaguin B, Churaev N, Muller V (1987) Wetting films. Surface forces. Springer, In, pp. 327–367 Derjaguin B, Churaev N, Muller V (1987) Wetting films. Surface forces. Springer, In, pp. 327–367
20.
Zurück zum Zitat Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423(6936):156–159CrossRef Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423(6936):156–159CrossRef
21.
Zurück zum Zitat Wasan D, Nikolov A, Kondiparty K (2011) The wetting and spreading of nanofluids on solids: role of the structural disjoining pressure. Curr Opin Colloid Interface Sci 16(4):344–349CrossRef Wasan D, Nikolov A, Kondiparty K (2011) The wetting and spreading of nanofluids on solids: role of the structural disjoining pressure. Curr Opin Colloid Interface Sci 16(4):344–349CrossRef
22.
Zurück zum Zitat Trokhymchuk A, Henderson D, Nikolov A, Wasan DT (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17(16):4940–4947CrossRef Trokhymchuk A, Henderson D, Nikolov A, Wasan DT (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17(16):4940–4947CrossRef
23.
Zurück zum Zitat Chengara A, Nikolov AD, Wasan DT, Trokhymchuk A, Henderson D (2004) Spreading of nanofluids driven by the structural disjoining pressure gradient. J Colloid Interface Sci 280(1):192–201CrossRef Chengara A, Nikolov AD, Wasan DT, Trokhymchuk A, Henderson D (2004) Spreading of nanofluids driven by the structural disjoining pressure gradient. J Colloid Interface Sci 280(1):192–201CrossRef
24.
Zurück zum Zitat Roustaei A, Moghadasi J, Bagherzadeh H, Shahrabadi A (2012) An experimental investigation of polysilicon nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration. In: SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers Roustaei A, Moghadasi J, Bagherzadeh H, Shahrabadi A (2012) An experimental investigation of polysilicon nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration. In: SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers
25.
Zurück zum Zitat Karimi A, Fakhroueian Z, Bahramian A, Pour Khiabani N, Darabad JB, Azin R, Arya S (2012) Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energy Fuel 26(2):1028–1036CrossRef Karimi A, Fakhroueian Z, Bahramian A, Pour Khiabani N, Darabad JB, Azin R, Arya S (2012) Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energy Fuel 26(2):1028–1036CrossRef
26.
Zurück zum Zitat Giraldo J, Benjumea P, Lopera S, Cortés FB, Ruiz MA (2013) Wettability alteration of sandstone cores by alumina-based nanofluids. Energy Fuel 27(7):3659–3665CrossRef Giraldo J, Benjumea P, Lopera S, Cortés FB, Ruiz MA (2013) Wettability alteration of sandstone cores by alumina-based nanofluids. Energy Fuel 27(7):3659–3665CrossRef
27.
Zurück zum Zitat Ju B, Fan T, Ma M (2006) Enhanced oil recovery by flooding with hydrophilic nanoparticles. China Particuology 4(01):41–46CrossRef Ju B, Fan T, Ma M (2006) Enhanced oil recovery by flooding with hydrophilic nanoparticles. China Particuology 4(01):41–46CrossRef
28.
Zurück zum Zitat Hendraningrat L, Li S, Torsæter O (2013) A coreflood investigation of nanofluid enhanced oil recovery. J Pet Sci Eng 111:128–138CrossRef Hendraningrat L, Li S, Torsæter O (2013) A coreflood investigation of nanofluid enhanced oil recovery. J Pet Sci Eng 111:128–138CrossRef
29.
Zurück zum Zitat Seid Mohammadi M, Moghadasi J, Naseri S (2014) An experimental investigation of wettability alteration in carbonate reservoir using γ-Al2O3 nanoparticles. Iranian Journal of Oil & Gas Science and Technology 3(2):18–26 Seid Mohammadi M, Moghadasi J, Naseri S (2014) An experimental investigation of wettability alteration in carbonate reservoir using γ-Al2O3 nanoparticles. Iranian Journal of Oil & Gas Science and Technology 3(2):18–26
30.
Zurück zum Zitat Hendraningrat L, Torsæter O (2014) Effects of the initial rock wettability on silica-based nanofluid-enhanced oil recovery processes at reservoir temperatures. Energy Fuel 28(10):6228–6241CrossRef Hendraningrat L, Torsæter O (2014) Effects of the initial rock wettability on silica-based nanofluid-enhanced oil recovery processes at reservoir temperatures. Energy Fuel 28(10):6228–6241CrossRef
31.
Zurück zum Zitat Nazari Moghaddam R, Bahramian A, Fakhroueian Z, Karimi A, Arya S (2015) Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy Fuel 29(4):2111–2119CrossRef Nazari Moghaddam R, Bahramian A, Fakhroueian Z, Karimi A, Arya S (2015) Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy Fuel 29(4):2111–2119CrossRef
32.
Zurück zum Zitat Al-Anssari S, Barifcani A, Wang S, Iglauer S (2016) Wettability alteration of oil-wet carbonate by silica nanofluid. J Colloid Interface Sci 461:435–442CrossRef Al-Anssari S, Barifcani A, Wang S, Iglauer S (2016) Wettability alteration of oil-wet carbonate by silica nanofluid. J Colloid Interface Sci 461:435–442CrossRef
33.
Zurück zum Zitat Sefiane K, Skilling J, MacGillivray J (2008) Contact line motion and dynamic wetting of nanofluid solutions. Adv Colloid Interf Sci 138(2):101–120CrossRef Sefiane K, Skilling J, MacGillivray J (2008) Contact line motion and dynamic wetting of nanofluid solutions. Adv Colloid Interf Sci 138(2):101–120CrossRef
34.
Zurück zum Zitat Ranganathan R, Peric M, Bales BL (1998) Time-resolved fluorescence quenching measurements of the aggregation numbers of normal sodium alkyl sulfate micelles well above the critical micelle concentrations. J Phys Chem B 102(43):8436–8439CrossRef Ranganathan R, Peric M, Bales BL (1998) Time-resolved fluorescence quenching measurements of the aggregation numbers of normal sodium alkyl sulfate micelles well above the critical micelle concentrations. J Phys Chem B 102(43):8436–8439CrossRef
35.
Zurück zum Zitat Paul BC, Ismail K (1993) Micellization of sodium dodecyl sulfate in sodium acetate-acetic acid buffer. A conductivity study. Bull Chem Soc Jpn 66(3):703–708CrossRef Paul BC, Ismail K (1993) Micellization of sodium dodecyl sulfate in sodium acetate-acetic acid buffer. A conductivity study. Bull Chem Soc Jpn 66(3):703–708CrossRef
36.
Zurück zum Zitat Paul B, Islam S, Ismail K (1998) Effect of acetate and propionate co-ions on the micellization of sodium dodecyl sulfate in water. J Phys Chem B 102(40):7807–7812CrossRef Paul B, Islam S, Ismail K (1998) Effect of acetate and propionate co-ions on the micellization of sodium dodecyl sulfate in water. J Phys Chem B 102(40):7807–7812CrossRef
37.
Zurück zum Zitat Ikeda S (1991) Stability of spherical and rod-like micelles of ionic surfactants, in relation to their counterion binding and modes of hydration. Colloid Polym Sci 269(1):49–61CrossRef Ikeda S (1991) Stability of spherical and rod-like micelles of ionic surfactants, in relation to their counterion binding and modes of hydration. Colloid Polym Sci 269(1):49–61CrossRef
38.
Zurück zum Zitat Dutkiewicz E, Jakubowska A (2002) Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles. Colloid Polym Sci 280(11):1009–1014CrossRef Dutkiewicz E, Jakubowska A (2002) Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles. Colloid Polym Sci 280(11):1009–1014CrossRef
39.
Zurück zum Zitat Li N, Liu S, Luo H (2002) A new method for the determination of the first and second cmc in CTAB solution by resonance Rayleigh scattering technology. Anal Lett 35(7):1229–1238CrossRef Li N, Liu S, Luo H (2002) A new method for the determination of the first and second cmc in CTAB solution by resonance Rayleigh scattering technology. Anal Lett 35(7):1229–1238CrossRef
40.
Zurück zum Zitat Israelachvili JN (2011) Intermolecular and surface forces: revised third edition. Academic press Israelachvili JN (2011) Intermolecular and surface forces: revised third edition. Academic press
41.
Zurück zum Zitat Andreas J, Hauser E, Tucker W (1938) Boundary tension by pendant drops1. J Phys Chem 42(8):1001–1019CrossRef Andreas J, Hauser E, Tucker W (1938) Boundary tension by pendant drops1. J Phys Chem 42(8):1001–1019CrossRef
42.
Zurück zum Zitat Thibaut A, Misselyn-Bauduin A-M, Grandjean J, Broze G, Jérôme R (2000) Adsorption of an aqueous mixture of surfactants on silica. Langmuir 16(24):9192–9198CrossRef Thibaut A, Misselyn-Bauduin A-M, Grandjean J, Broze G, Jérôme R (2000) Adsorption of an aqueous mixture of surfactants on silica. Langmuir 16(24):9192–9198CrossRef
43.
Zurück zum Zitat Penfold J, Staples E, Tucker I, Thomas R (2002) Adsorption of mixed anionic and nonionic surfactants at the hydrophilic silicon surface. Langmuir 18(15):5755–5760CrossRef Penfold J, Staples E, Tucker I, Thomas R (2002) Adsorption of mixed anionic and nonionic surfactants at the hydrophilic silicon surface. Langmuir 18(15):5755–5760CrossRef
44.
Zurück zum Zitat Penfold J, Tucker I, Staples E, Thomas R (2004) Manipulation of the adsorption of ionic surfactants onto hydrophilic silica using polyelectrolytes. Langmuir 20(17):7177–7182CrossRef Penfold J, Tucker I, Staples E, Thomas R (2004) Manipulation of the adsorption of ionic surfactants onto hydrophilic silica using polyelectrolytes. Langmuir 20(17):7177–7182CrossRef
45.
Zurück zum Zitat Tadros TF (2006) Applied surfactants: principles and applications. Wiley Tadros TF (2006) Applied surfactants: principles and applications. Wiley
46.
Zurück zum Zitat Liu Y, Tourbin M, Lachaize S, Guiraud P (2013) Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere 92(6):681–687CrossRef Liu Y, Tourbin M, Lachaize S, Guiraud P (2013) Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere 92(6):681–687CrossRef
Metadaten
Titel
Stabilizing silica nanoparticles in high saline water by using ionic surfactants for wettability alteration application
verfasst von
Reza Songolzadeh
Jamshid Moghadasi
Publikationsdatum
03.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 1/2017
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-016-3987-3

Weitere Artikel der Ausgabe 1/2017

Colloid and Polymer Science 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.