Skip to main content
Erschienen in: Archive of Applied Mechanics 3/2023

09.11.2022 | Original

Modified couple stress-based free vibration and dynamic response of rotating FG multilayer composite microplates reinforced with graphene platelets

verfasst von: Bo Yin, Jianshi Fang

Erschienen in: Archive of Applied Mechanics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A centrifugally stiffened size-dependent model is developed for dynamic analysis of rotating functionally graded (FG) multilayer composite microplates reinforced with graphene platelets (GPLs) based on the modified couple stress theory and the first-order shear deformation theory. The effective elastic modulus of the graphene platelet-reinforced composite (GPLRC) is calculated on the basis of the modified Halpin–Tsai model, while a rule of mixture is adopted to predict the effective mass density and Poisson’s ratio. The second-kind Lagrange’s equations are employed to derive the governing equations of motion, in which the mode functions for displacements are constructed by Chebyshev polynomials multiplied by the boundary functions. The free vibration problem is determined by a complex modal analysis based on the state space method, and the dynamic responses under prescribed rotational motions are calculated by the fourth-order Runge–Kutta–Merson’s method. The convergence and comparative examples are carried out to validate the effectiveness and accuracy of the proposed model. A parametric study is conducted to investigate the effects of material length scale parameter, hub radius ratio, angular velocity, GPL weight fraction, distribution pattern and geometry property on the dynamic behaviors of the rotating FG GPLRC simply supported and cantilevered microplates. Numerical results show that the rotational motion and size dependency significantly affect the reinforcement effect of GPL. Results also indicate that the dispersion of the square GPLs with fewer graphene layers and larger contact surface area near the bottom and top positions can reinforce the stiffness more effectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
2.
Zurück zum Zitat Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef
3.
Zurück zum Zitat Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., Chen, Y.: An isotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B Condens. Matter. 405, 1301–1306 (2010)CrossRef Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., Chen, Y.: An isotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B Condens. Matter. 405, 1301–1306 (2010)CrossRef
4.
Zurück zum Zitat Bellucci, S., Balasubramanian, C., Micciulla, F., Rinaldi, G.: CNT composites for aerospace applications. J. Exp. Nanosci. 2(3), 193–206 (2007)CrossRef Bellucci, S., Balasubramanian, C., Micciulla, F., Rinaldi, G.: CNT composites for aerospace applications. J. Exp. Nanosci. 2(3), 193–206 (2007)CrossRef
5.
Zurück zum Zitat Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Nakhaei Moghaddam, M.R., Alias, Y.: Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 69, 32–45 (2014)CrossRef Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., Nakhaei Moghaddam, M.R., Alias, Y.: Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 69, 32–45 (2014)CrossRef
6.
Zurück zum Zitat Gauvin, F., Robert, M.: Durability study of vinylester/silicate nanocomposites for civil engineering applications. Polym. Degrad. Stabil. 121, 359–368 (2015)CrossRef Gauvin, F., Robert, M.: Durability study of vinylester/silicate nanocomposites for civil engineering applications. Polym. Degrad. Stabil. 121, 359–368 (2015)CrossRef
7.
Zurück zum Zitat Bouazza, M., Zenkour, A.M.: Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. Arch. Appl. Mech. 90(8), 1755–1769 (2020)CrossRef Bouazza, M., Zenkour, A.M.: Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. Arch. Appl. Mech. 90(8), 1755–1769 (2020)CrossRef
8.
Zurück zum Zitat Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkarm, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)CrossRef Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkarm, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)CrossRef
9.
Zurück zum Zitat Wang, F., Drzal, L.T., Qin, Y., Huang, Z.: Mechanical properties and thermal conductivity of graphene nanoplatelets/epoxy composites. J. Mater. Sci. 50(3), 1082–1093 (2015)CrossRef Wang, F., Drzal, L.T., Qin, Y., Huang, Z.: Mechanical properties and thermal conductivity of graphene nanoplatelets/epoxy composites. J. Mater. Sci. 50(3), 1082–1093 (2015)CrossRef
10.
Zurück zum Zitat Shen, H.-S., Xiang, Y., Lin, F., Hui, D.: Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos. B 119, 67–78 (2017)MATHCrossRef Shen, H.-S., Xiang, Y., Lin, F., Hui, D.: Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos. B 119, 67–78 (2017)MATHCrossRef
11.
Zurück zum Zitat Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput. Methods Appl. Mech. Engrg. 319, 175–193 (2017)MathSciNetMATHCrossRef Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput. Methods Appl. Mech. Engrg. 319, 175–193 (2017)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 140, 110–119 (2017)CrossRef Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 140, 110–119 (2017)CrossRef
13.
Zurück zum Zitat Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct. 193, 281–294 (2018)CrossRef Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct. 193, 281–294 (2018)CrossRef
14.
Zurück zum Zitat Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. B 134, 106–113 (2018)CrossRef Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. B 134, 106–113 (2018)CrossRef
15.
Zurück zum Zitat Liu, D., Li, Z., Kitipornchai, S., Yang, J.: Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates. Compos. Struct. 229, 111453 (2019)CrossRef Liu, D., Li, Z., Kitipornchai, S., Yang, J.: Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates. Compos. Struct. 229, 111453 (2019)CrossRef
16.
Zurück zum Zitat Reddy, R.M.R., Karunasena, W., Lokuge, W.: Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions. Aerosp. Sci. Tech. 78, 147–156 (2018)CrossRef Reddy, R.M.R., Karunasena, W., Lokuge, W.: Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions. Aerosp. Sci. Tech. 78, 147–156 (2018)CrossRef
17.
Zurück zum Zitat Guo, H., Cao, S., Yang, T., Chen, Y.: Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Int. J. Mech. Sci. 142, 610–621 (2018)CrossRef Guo, H., Cao, S., Yang, T., Chen, Y.: Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Int. J. Mech. Sci. 142, 610–621 (2018)CrossRef
18.
Zurück zum Zitat Thai, C.H., Ferreira, A.J.M., Tran, T.D., Phung-Van, P.: Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos. Struct. 220, 749–759 (2019)CrossRef Thai, C.H., Ferreira, A.J.M., Tran, T.D., Phung-Van, P.: Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos. Struct. 220, 749–759 (2019)CrossRef
19.
Zurück zum Zitat Selim, B.A., Liu, Z., Liew, K.M.: Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Struct. 145, 106372 (2019)CrossRef Selim, B.A., Liu, Z., Liew, K.M.: Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Struct. 145, 106372 (2019)CrossRef
20.
Zurück zum Zitat Al-Furjan, M.S.H., Habibi, M., Safarpour, H.: Vibration control of a smart shell reinforced by graphene nanoplatelets. Int. J. Appl. Mech. 12(06), 2050066 (2020)CrossRef Al-Furjan, M.S.H., Habibi, M., Safarpour, H.: Vibration control of a smart shell reinforced by graphene nanoplatelets. Int. J. Appl. Mech. 12(06), 2050066 (2020)CrossRef
21.
Zurück zum Zitat Nguyen, N.V., Nguyen-Xuan, H., Lee, J.: A quasi-three-dimensional isogeometric model for porous sandwich functionally graded plates reinforced with graphene nanoplatelets. J. Sandw. Struct. Mater. 24(2), 825–859 (2022)CrossRef Nguyen, N.V., Nguyen-Xuan, H., Lee, J.: A quasi-three-dimensional isogeometric model for porous sandwich functionally graded plates reinforced with graphene nanoplatelets. J. Sandw. Struct. Mater. 24(2), 825–859 (2022)CrossRef
22.
Zurück zum Zitat Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)MATHCrossRef Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)MATHCrossRef
23.
Zurück zum Zitat Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef
24.
Zurück zum Zitat Yue, Y.M., Xu, K.Y., Tan, Z.Q., Wang, W.J., Wang, D.: The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate. Arch. Appl. Mech. 89(7), 1301–1315 (2019)CrossRef Yue, Y.M., Xu, K.Y., Tan, Z.Q., Wang, W.J., Wang, D.: The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate. Arch. Appl. Mech. 89(7), 1301–1315 (2019)CrossRef
26.
Zurück zum Zitat Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. An. 11(1), 415–448 (1962)MathSciNetMATHCrossRef Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. An. 11(1), 415–448 (1962)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRef Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRef
28.
Zurück zum Zitat Phung-Van, P., Thai, C.H., Nguyen-Xuan, H., Wahab, M.A.: Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Compos. B 164, 215–225 (2019)CrossRef Phung-Van, P., Thai, C.H., Nguyen-Xuan, H., Wahab, M.A.: Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Compos. B 164, 215–225 (2019)CrossRef
29.
Zurück zum Zitat Babaei, A.: Longitudinal vibration responses of axially functionally graded optimized MEMS gyroscope using Rayleigh-Ritz method, determination of discernible patterns and chaotic regimes. SN Appl. Sci. 1(8), 1–12 (2019)CrossRef Babaei, A.: Longitudinal vibration responses of axially functionally graded optimized MEMS gyroscope using Rayleigh-Ritz method, determination of discernible patterns and chaotic regimes. SN Appl. Sci. 1(8), 1–12 (2019)CrossRef
30.
Zurück zum Zitat Babaei, A., Yang, C.X.: Vibration analysis of rotating rods based on the nonlocal elasticity theory and coupled displacement field. Microsyst. Technol. 25(3), 1077–1085 (2019)CrossRef Babaei, A., Yang, C.X.: Vibration analysis of rotating rods based on the nonlocal elasticity theory and coupled displacement field. Microsyst. Technol. 25(3), 1077–1085 (2019)CrossRef
33.
Zurück zum Zitat Fang, J., Yin, B., Zhang, X., Yang, B.: Size-dependent vibration of functionally graded rotating nanobeams with different boundary conditions based on nonlocal elasticity theory. Proc. IMechE C J. Mech. Eng. Sci. 236(6), 2756–2774 (2022)CrossRef Fang, J., Yin, B., Zhang, X., Yang, B.: Size-dependent vibration of functionally graded rotating nanobeams with different boundary conditions based on nonlocal elasticity theory. Proc. IMechE C J. Mech. Eng. Sci. 236(6), 2756–2774 (2022)CrossRef
34.
Zurück zum Zitat Thai, S., Thai, H.T., Vo, P., Patel, V.I.: Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis. Comput. Struct. 190, 219–241 (2017)CrossRef Thai, S., Thai, H.T., Vo, P., Patel, V.I.: Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis. Comput. Struct. 190, 219–241 (2017)CrossRef
35.
Zurück zum Zitat Thai, C.H., Ferreira, A.J.M., Phung-Van, P.: Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Compos. B 169, 174–188 (2019)CrossRef Thai, C.H., Ferreira, A.J.M., Phung-Van, P.: Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Compos. B 169, 174–188 (2019)CrossRef
36.
Zurück zum Zitat Mohammad-Rezaei Bidgoli, E., Arefi, M.: Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation. J. Sandw. Struct. Mater. 23(2), 436–472 (2021)CrossRef Mohammad-Rezaei Bidgoli, E., Arefi, M.: Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation. J. Sandw. Struct. Mater. 23(2), 436–472 (2021)CrossRef
37.
Zurück zum Zitat Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)MATHCrossRef Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)MATHCrossRef
38.
Zurück zum Zitat Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P., Nguyen-Xuan, H., Vo, T.P.: A refined quasi -3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Methods Appl. Mech. Eng. 313, 904–940 (2017)MathSciNetMATHCrossRef Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P., Nguyen-Xuan, H., Vo, T.P.: A refined quasi -3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Methods Appl. Mech. Eng. 313, 904–940 (2017)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Fang, J., Gu, J., Wang, H.: Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory. Int. J. Mech. Sci. 136, 188–199 (2018)CrossRef Fang, J., Gu, J., Wang, H.: Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory. Int. J. Mech. Sci. 136, 188–199 (2018)CrossRef
40.
Zurück zum Zitat Farzam, A., Hassani, B.: Isogeometric analysis of in-plane functionally graded porous microplates using modified couple stress theory. Aerosp. Sci. Tech. 91, 508–524 (2019)CrossRef Farzam, A., Hassani, B.: Isogeometric analysis of in-plane functionally graded porous microplates using modified couple stress theory. Aerosp. Sci. Tech. 91, 508–524 (2019)CrossRef
41.
Zurück zum Zitat Fan, F., Xu, Y., Sahmani, S., Safaei, B.: Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput. Methods Appl. Mech. Eng. 372, 113400 (2020)MathSciNetMATHCrossRef Fan, F., Xu, Y., Sahmani, S., Safaei, B.: Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput. Methods Appl. Mech. Eng. 372, 113400 (2020)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Guo, L., Xin, X., Shahsavari, D., Karami, B.: Dynamic response of porous E-FGM thick microplate resting on elastic foundation subjected to moving load with acceleration. Thin-Walled Struct. 173, 108981 (2022)CrossRef Guo, L., Xin, X., Shahsavari, D., Karami, B.: Dynamic response of porous E-FGM thick microplate resting on elastic foundation subjected to moving load with acceleration. Thin-Walled Struct. 173, 108981 (2022)CrossRef
43.
Zurück zum Zitat Arefi, M., Bidgoli, E.M.R., Rabczuk, T.: Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Eur. J. Mech. A-Solids 77, 103802 (2019)MathSciNetMATHCrossRef Arefi, M., Bidgoli, E.M.R., Rabczuk, T.: Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Eur. J. Mech. A-Solids 77, 103802 (2019)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Arefi, M., Firouzeh, S., Bidgoli, E.M.R., Civalek, Ö.: Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Compos. Struct. 247, 112391 (2020)CrossRef Arefi, M., Firouzeh, S., Bidgoli, E.M.R., Civalek, Ö.: Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Compos. Struct. 247, 112391 (2020)CrossRef
46.
Zurück zum Zitat Thai, C.H., Ferreira, A.J.M., Tran, T.D., Phung-Van, P.: A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Compos. Struct. 234, 111695 (2020)CrossRef Thai, C.H., Ferreira, A.J.M., Tran, T.D., Phung-Van, P.: A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Compos. Struct. 234, 111695 (2020)CrossRef
47.
Zurück zum Zitat Afshari, H., Adab, N.: Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mech. Based Des. Struct. 50(1), 184–205 (2022)CrossRef Afshari, H., Adab, N.: Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mech. Based Des. Struct. 50(1), 184–205 (2022)CrossRef
48.
Zurück zum Zitat Khorasani, M., Soleimani-Javid, Z., Arshid, E., Lampani, L., Civalek, Ö.: Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect. Compos. Struct. 258, 113430 (2021)CrossRef Khorasani, M., Soleimani-Javid, Z., Arshid, E., Lampani, L., Civalek, Ö.: Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect. Compos. Struct. 258, 113430 (2021)CrossRef
49.
Zurück zum Zitat Arshid, E., Amir, S., Loghman, A.: Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp. Sci. Tech. 111, 106561 (2021)CrossRef Arshid, E., Amir, S., Loghman, A.: Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp. Sci. Tech. 111, 106561 (2021)CrossRef
50.
Zurück zum Zitat Tao, C., Dai, T.: Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates. Eur. J. Mech. A-Solids 86, 104171 (2021)MathSciNetMATHCrossRef Tao, C., Dai, T.: Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates. Eur. J. Mech. A-Solids 86, 104171 (2021)MathSciNetMATHCrossRef
51.
Zurück zum Zitat Tao, C., Dai, T.: Modified couple stress-based nonlinear static bending and transient responses of size-dependent sandwich microplates with graphene nanocomposite and porous layers. Thin-Walled Struct. 171, 108704 (2022)CrossRef Tao, C., Dai, T.: Modified couple stress-based nonlinear static bending and transient responses of size-dependent sandwich microplates with graphene nanocomposite and porous layers. Thin-Walled Struct. 171, 108704 (2022)CrossRef
52.
Zurück zum Zitat Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021)CrossRef Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021)CrossRef
53.
Zurück zum Zitat Fan, J., Zhang, D., Shen, H.: Dynamic modeling and simulation of a rotating flexible hub-beam based on different discretization methods of deformation fields. Arch. Appl. Mech. 90(2), 291–304 (2020)CrossRef Fan, J., Zhang, D., Shen, H.: Dynamic modeling and simulation of a rotating flexible hub-beam based on different discretization methods of deformation fields. Arch. Appl. Mech. 90(2), 291–304 (2020)CrossRef
54.
Zurück zum Zitat Karahan, E.D., Özdemir, Ö.: Finite element formulation and free vibration analyses of rotating functionally graded blades. J. Theor. Appl. Mech. 59(1), 3–15 (2021) Karahan, E.D., Özdemir, Ö.: Finite element formulation and free vibration analyses of rotating functionally graded blades. J. Theor. Appl. Mech. 59(1), 3–15 (2021)
55.
Zurück zum Zitat Yoo, H.H., Chung, J.: Dynamics of rectangular plates undergoing prescribed overall motion. J. Sound Vib. 239(1), 123–137 (2001)CrossRef Yoo, H.H., Chung, J.: Dynamics of rectangular plates undergoing prescribed overall motion. J. Sound Vib. 239(1), 123–137 (2001)CrossRef
56.
Zurück zum Zitat Yoo, H.H., Pierre, C.: Modal characteristic of a rotating rectangular cantilever plate. J. Sound Vib. 259(1), 81–96 (2003)CrossRef Yoo, H.H., Pierre, C.: Modal characteristic of a rotating rectangular cantilever plate. J. Sound Vib. 259(1), 81–96 (2003)CrossRef
57.
Zurück zum Zitat Li, L., Zhang, D.G.: Free vibration analysis of rotating functionally graded rectangular plates. Compos. Struct. 136, 493–504 (2016)CrossRef Li, L., Zhang, D.G.: Free vibration analysis of rotating functionally graded rectangular plates. Compos. Struct. 136, 493–504 (2016)CrossRef
58.
Zurück zum Zitat Fang, J., Zhou, D.: Free vibration analysis of rotating Mindlin plates with variable thickness. Int. J. Struct. Stab. Dy. 17(04), 1750046 (2017)MathSciNetCrossRef Fang, J., Zhou, D.: Free vibration analysis of rotating Mindlin plates with variable thickness. Int. J. Struct. Stab. Dy. 17(04), 1750046 (2017)MathSciNetCrossRef
60.
Zurück zum Zitat Guo, H., Ouyang, X., Yang, T., Żur, K.K., Reddy, J.N.: On the dynamics of rotating cracked functionally graded blades reinforced with graphene nanoplatelets. Eng. Struct. 249, 113286 (2021)CrossRef Guo, H., Ouyang, X., Yang, T., Żur, K.K., Reddy, J.N.: On the dynamics of rotating cracked functionally graded blades reinforced with graphene nanoplatelets. Eng. Struct. 249, 113286 (2021)CrossRef
61.
Zurück zum Zitat Zhao, T., Ma, Y., Zhang, H., Yang, J.: Coupled free vibration of spinning functionally graded porous double-bladed disk systems reinforced with graphene nanoplatelets. Materials 13(24), 5610 (2020)CrossRef Zhao, T., Ma, Y., Zhang, H., Yang, J.: Coupled free vibration of spinning functionally graded porous double-bladed disk systems reinforced with graphene nanoplatelets. Materials 13(24), 5610 (2020)CrossRef
62.
Zurück zum Zitat Zhao, T.Y., Jiang, Z.Y., Zhao, Z., Xie, L.Y., Yuan, H.Q.: Modeling and free vibration analysis of rotating hub-blade assemblies reinforced with graphene nanoplatelets. J. Strain Anal. Eng. 56(8), 563–573 (2021)CrossRef Zhao, T.Y., Jiang, Z.Y., Zhao, Z., Xie, L.Y., Yuan, H.Q.: Modeling and free vibration analysis of rotating hub-blade assemblies reinforced with graphene nanoplatelets. J. Strain Anal. Eng. 56(8), 563–573 (2021)CrossRef
63.
Zurück zum Zitat Zhao, T.Y., Wang, Y.X., Yu, Y.X., Cai, Y., Wang, Y.Q.: Modeling and vibration analysis of a spinning assembled beam–plate structure reinforced by graphene nanoplatelets. Acta Mech. 232(10), 3863–3879 (2021)MathSciNetMATHCrossRef Zhao, T.Y., Wang, Y.X., Yu, Y.X., Cai, Y., Wang, Y.Q.: Modeling and vibration analysis of a spinning assembled beam–plate structure reinforced by graphene nanoplatelets. Acta Mech. 232(10), 3863–3879 (2021)MathSciNetMATHCrossRef
64.
Zurück zum Zitat Shojaeefard, M.H., Googarchin, H.S., Mahinzare, M., Ghadiri, M.: Free vibration and critical angular velocity of a rotating variable thickness two-directional FG circular microplate. Microsyst. Technol. 24(3), 1525–1543 (2018)CrossRef Shojaeefard, M.H., Googarchin, H.S., Mahinzare, M., Ghadiri, M.: Free vibration and critical angular velocity of a rotating variable thickness two-directional FG circular microplate. Microsyst. Technol. 24(3), 1525–1543 (2018)CrossRef
65.
Zurück zum Zitat Mahinzare, M., Barooti, M.M., Ghadiri, M.: Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment. Microsyst. Technol. 24(3), 1695–1711 (2018)CrossRef Mahinzare, M., Barooti, M.M., Ghadiri, M.: Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment. Microsyst. Technol. 24(3), 1695–1711 (2018)CrossRef
66.
Zurück zum Zitat Fang, J., Wang, H., Zhang, X.: On size-dependent dynamic behavior of rotating functionally graded Kirchhoff microplates. Int. J. Mech. Sci. 152, 34–50 (2019)CrossRef Fang, J., Wang, H., Zhang, X.: On size-dependent dynamic behavior of rotating functionally graded Kirchhoff microplates. Int. J. Mech. Sci. 152, 34–50 (2019)CrossRef
67.
Zurück zum Zitat Shenas, A.G., Ziaee, S., Malekzadeh, P.: Nonlinear deformation of rotating functionally graded trapezoidal microplates in thermal environment. Compos. Struct. 265, 113675 (2021)CrossRef Shenas, A.G., Ziaee, S., Malekzadeh, P.: Nonlinear deformation of rotating functionally graded trapezoidal microplates in thermal environment. Compos. Struct. 265, 113675 (2021)CrossRef
68.
Zurück zum Zitat Shenas, A.G., Ziaee, S., Malekzadeh, P.: Nonlinear free vibration of rotating FG trapezoidal microplates in thermal environment. Thin-Walled Struct. 170, 108614 (2022)CrossRef Shenas, A.G., Ziaee, S., Malekzadeh, P.: Nonlinear free vibration of rotating FG trapezoidal microplates in thermal environment. Thin-Walled Struct. 170, 108614 (2022)CrossRef
69.
Zurück zum Zitat Ling, X., Tu, S.-T., Gong, J.-M.: Application of Runge–Kutta–Merson algorithm for creep damage analysis. Int. J. Pres. Ves. Pip. 77, 243–248 (2000)CrossRef Ling, X., Tu, S.-T., Gong, J.-M.: Application of Runge–Kutta–Merson algorithm for creep damage analysis. Int. J. Pres. Ves. Pip. 77, 243–248 (2000)CrossRef
70.
Zurück zum Zitat Zolochevsky, A., Galishin, A., Sklepus, S., Voyiadjis, G.Z.: Analysis of creep deformation and creep damage in thin-walled branched shells from materials with different behavior in tension and compression. Int. J. Solids Struct. 44(16), 5075–5100 (2007)MATHCrossRef Zolochevsky, A., Galishin, A., Sklepus, S., Voyiadjis, G.Z.: Analysis of creep deformation and creep damage in thin-walled branched shells from materials with different behavior in tension and compression. Int. J. Solids Struct. 44(16), 5075–5100 (2007)MATHCrossRef
Metadaten
Titel
Modified couple stress-based free vibration and dynamic response of rotating FG multilayer composite microplates reinforced with graphene platelets
verfasst von
Bo Yin
Jianshi Fang
Publikationsdatum
09.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 3/2023
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02313-z

Weitere Artikel der Ausgabe 3/2023

Archive of Applied Mechanics 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.