Skip to main content
Erschienen in: Computational Mechanics 6/2015

01.12.2015 | Original Paper

Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra

verfasst von: Eric B. Chin, Jean B. Lasserre, N. Sukumar

Erschienen in: Computational Mechanics | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a method for the numerical integration of homogeneous functions over convex and nonconvex polygons and polyhedra. On applying Stokes’s theorem and using the property of homogeneous functions, we show that it suffices to integrate these functions on the boundary facets of the polytope. For homogeneous polynomials, this approach is used to further reduce the integration to just function evaluations at the vertices of the polytope. This results in an exact cubature rule for a homogeneous polynomial f, where the integration points are only the vertices of the polytope and the function f and its partial derivatives are evaluated at these vertices. Numerical integration of homogeneous functions in polar coordinates and on curved domains are also presented. Along with an efficient algorithm for its implementation, we showcase several illustrative examples in two and three dimensions that demonstrate the accuracy of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Algebraic varieties are the extension of algebraic curves to higher dimensions and are defined to be the set of solutions of a system of polynomial equations over real or complex numbers.
 
Literatur
1.
Zurück zum Zitat Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MATHMathSciNet Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MATHMathSciNet
2.
Zurück zum Zitat Sudhakar Y, Moitinho de Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415CrossRef Sudhakar Y, Moitinho de Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415CrossRef
3.
Zurück zum Zitat Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput Methods Appl Mech Eng 258:39–54MATHMathSciNetCrossRef Sudhakar Y, Wall WA (2013) Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput Methods Appl Mech Eng 258:39–54MATHMathSciNetCrossRef
4.
Zurück zum Zitat Schillinger D, Reuss M (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22:391–455MathSciNetCrossRef Schillinger D, Reuss M (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22:391–455MathSciNetCrossRef
5.
Zurück zum Zitat Beirao da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23:199–214MATHMathSciNetCrossRef Beirao da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23:199–214MATHMathSciNetCrossRef
6.
Zurück zum Zitat Mu L, Wang JP, Ye X (2015) A weak Galerkin finite element method with polynomial reduction. J Comput Appl Math 285:45–58MathSciNetCrossRef Mu L, Wang JP, Ye X (2015) A weak Galerkin finite element method with polynomial reduction. J Comput Appl Math 285:45–58MathSciNetCrossRef
7.
Zurück zum Zitat Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554MATHMathSciNetCrossRef Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554MATHMathSciNetCrossRef
9.
Zurück zum Zitat Taylor ME (1996) Partial differential equations: basic theory. Springer-Verlag, New YorkCrossRef Taylor ME (1996) Partial differential equations: basic theory. Springer-Verlag, New YorkCrossRef
10.
Zurück zum Zitat Lasserre JB (1983) An analytical expression and an algorithm for the volume of a convex polyhedron in \({\mathbb{R}}^n\). J Optim Theory Appl 39(3):363–377MATHMathSciNetCrossRef Lasserre JB (1983) An analytical expression and an algorithm for the volume of a convex polyhedron in \({\mathbb{R}}^n\). J Optim Theory Appl 39(3):363–377MATHMathSciNetCrossRef
12.
Zurück zum Zitat Baldoni V, Berline N, De Loera JA, Dutra B, Köppe M, Moreinis S, Pinto G, Vergne M, Wu J (2014) A User’s Guide for LattE integrale v1.7.2. Department of Mathematics, University of California, Davis, CA 95616, October 2014. Available at http://www.math.ucdavis.edu/latte Baldoni V, Berline N, De Loera JA, Dutra B, Köppe M, Moreinis S, Pinto G, Vergne M, Wu J (2014) A User’s Guide for LattE integrale v1.7.2. Department of Mathematics, University of California, Davis, CA 95616, October 2014. Available at http://​www.​math.​ucdavis.​edu/​latte
13.
Zurück zum Zitat Baldoni V, Berline N, De Loera JA, Köppe M, Vergne M (2011) How to integrate polynomials over simplices. Math Comput 80:297–325 Baldoni V, Berline N, De Loera JA, Köppe M, Vergne M (2011) How to integrate polynomials over simplices. Math Comput 80:297–325
14.
Zurück zum Zitat De Loera JA, Dutra B, Köppe M, Moreinis S, Pinto G, Wu J (2013) Software for exact integration of polynomials over polyhedra. Comput Geom 46(3):232–252MATHMathSciNetCrossRef De Loera JA, Dutra B, Köppe M, Moreinis S, Pinto G, Wu J (2013) Software for exact integration of polynomials over polyhedra. Comput Geom 46(3):232–252MATHMathSciNetCrossRef
15.
Zurück zum Zitat Beatty MF (1977) Vector analysis of finite rigid rotations. J Appl Mech 44(3):501–502MATHCrossRef Beatty MF (1977) Vector analysis of finite rigid rotations. J Appl Mech 44(3):501–502MATHCrossRef
Metadaten
Titel
Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra
verfasst von
Eric B. Chin
Jean B. Lasserre
N. Sukumar
Publikationsdatum
01.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1213-7

Weitere Artikel der Ausgabe 6/2015

Computational Mechanics 6/2015 Zur Ausgabe

Neuer Inhalt