Skip to main content
Erschienen in: Computational Mechanics 1/2016

01.01.2016 | Original Paper

A selective enhanced FE-method for phase field modeling of ferroelectric materials

verfasst von: M. Krauß, I. Münch

Erschienen in: Computational Mechanics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ferroelectric materials are characterized by electrical di-poles, forming domains of uniform polarization orientation. In phase field models diffuse interfaces separate polarization domains as domain walls. Finite elements describe such interfaces with continuous field variables. But high gradients appear in the field variable requiring corresponding interpolations in the vicinity of domain walls. Otherwise, moving interfaces between phases stick to artificial minimum energy states, known as mesh-pinning. For this purpose, we study a selective enhancement of standard finite elements to avoid mesh-pinning effects. Our method enhances the ansatz space locally without impact on the physical theory or the overall finite element formulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef
2.
Zurück zum Zitat Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Comput Coupling Ph Diagr Thermochem 32:268–294CrossRef Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Comput Coupling Ph Diagr Thermochem 32:268–294CrossRef
3.
Zurück zum Zitat Wang J, Shi S-Q, Chen L-Q, Li Y, Zhang T-Y (2004) Phase field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater 52:749–764CrossRef Wang J, Shi S-Q, Chen L-Q, Li Y, Zhang T-Y (2004) Phase field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater 52:749–764CrossRef
4.
Zurück zum Zitat Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J Mesh Phys Solids 55:280–305MathSciNetCrossRefMATH Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J Mesh Phys Solids 55:280–305MathSciNetCrossRefMATH
5.
Zurück zum Zitat Schrade D, Müller R, Xu BX, Gross D (2007) Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput Methods Appl Mech Eng 196:4365–4374CrossRefMATH Schrade D, Müller R, Xu BX, Gross D (2007) Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput Methods Appl Mech Eng 196:4365–4374CrossRefMATH
6.
Zurück zum Zitat Wang J, Kamlah M (2008) Domain control in ferroelectric nanodots through surface charges. Appl Phys Lett 93:262904-1–262904-3 Wang J, Kamlah M (2008) Domain control in ferroelectric nanodots through surface charges. Appl Phys Lett 93:262904-1–262904-3
7.
Zurück zum Zitat Hlinka J, Marton P (2006) Phenomenological model of a \(90^{\circ }\) domain wall in \(\text{ BaTiO }_{3}\)-type ferroelectrics. Phys Rev B 74:104104-1–104104-12CrossRef Hlinka J, Marton P (2006) Phenomenological model of a \(90^{\circ }\) domain wall in \(\text{ BaTiO }_{3}\)-type ferroelectrics. Phys Rev B 74:104104-1–104104-12CrossRef
9.
Zurück zum Zitat Münch I, Krauß M, Wagner W, Kamlah M (2012) Ferroelectric nanogenerators coupled to an electric circuit for energy harvesting. Smart Mater Struct 21:115026-1–115026-8CrossRef Münch I, Krauß M, Wagner W, Kamlah M (2012) Ferroelectric nanogenerators coupled to an electric circuit for energy harvesting. Smart Mater Struct 21:115026-1–115026-8CrossRef
10.
Zurück zum Zitat Provatas N, Goldenfeld N, Dantzig JA (1998) Efficient computation of dentric microstructures using adaptive mesh refinement. Phys Rev Lett 80(15):3308–3311CrossRef Provatas N, Goldenfeld N, Dantzig JA (1998) Efficient computation of dentric microstructures using adaptive mesh refinement. Phys Rev Lett 80(15):3308–3311CrossRef
11.
Zurück zum Zitat Jeong J-H, Goldenfeld N, Dantzig JA (2001) Phase field model for three-dimensional dentrite growth with fluid flow. Phys Rev E 64:041602-1–041602-14CrossRef Jeong J-H, Goldenfeld N, Dantzig JA (2001) Phase field model for three-dimensional dentrite growth with fluid flow. Phys Rev E 64:041602-1–041602-14CrossRef
12.
Zurück zum Zitat Welschinger F, Hofacker M, Miehe C (2010) Configurational-force-based adaptive solver for a phase field model of fracture. Proc Appl Math Mech 10:689–692CrossRef Welschinger F, Hofacker M, Miehe C (2010) Configurational-force-based adaptive solver for a phase field model of fracture. Proc Appl Math Mech 10:689–692CrossRef
13.
Zurück zum Zitat Kuhn C, Müller R (2011) A new finite element technique for a phase field model of brittle fracture. J Theor Appl Mech 49(4):1115–1133 Kuhn C, Müller R (2011) A new finite element technique for a phase field model of brittle fracture. J Theor Appl Mech 49(4):1115–1133
14.
Zurück zum Zitat Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219CrossRefMATH Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219CrossRefMATH
15.
Zurück zum Zitat Wachspress EL (1978) Incompatible quadrilateral basis functions. Int J Numer Methods Eng 12:589–595CrossRefMATH Wachspress EL (1978) Incompatible quadrilateral basis functions. Int J Numer Methods Eng 12:589–595CrossRefMATH
16.
Zurück zum Zitat Wilson EL, Ibrahimbegovic A (1990) Use of incompatible displacement modes for the calculation of element stiffnesses or stresses. Finite Elem Anal Des 7:229–241CrossRef Wilson EL, Ibrahimbegovic A (1990) Use of incompatible displacement modes for the calculation of element stiffnesses or stresses. Finite Elem Anal Des 7:229–241CrossRef
17.
Zurück zum Zitat Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695CrossRefMATH Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695CrossRefMATH
18.
Zurück zum Zitat Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATH Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MathSciNetCrossRefMATH
19.
Zurück zum Zitat Taylor RL, Zienkiewicz OC, Oñate E (1998) A hierarchical finite element method based on the partition of unity. Comput Appl Mech Eng 152:73–84CrossRefMATH Taylor RL, Zienkiewicz OC, Oñate E (1998) A hierarchical finite element method based on the partition of unity. Comput Appl Mech Eng 152:73–84CrossRefMATH
21.
Zurück zum Zitat Devonshire A (1954) Theory of ferroelectrics. Philipp Mag 3(10):85–130 Devonshire A (1954) Theory of ferroelectrics. Philipp Mag 3(10):85–130
22.
Zurück zum Zitat Li Z, Chan SK, Grimsditch MH, Zouboulis ES (1991) The elastic and electromechanical properties of tetragonal \(\text{ BaTiO }_3\) single crystals. J Appl Phys 70:7327–7332CrossRef Li Z, Chan SK, Grimsditch MH, Zouboulis ES (1991) The elastic and electromechanical properties of tetragonal \(\text{ BaTiO }_3\) single crystals. J Appl Phys 70:7327–7332CrossRef
23.
Zurück zum Zitat Berlincourt D, Jaffe H (1958) Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys Rev 111(1):143–148CrossRef Berlincourt D, Jaffe H (1958) Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys Rev 111(1):143–148CrossRef
24.
Zurück zum Zitat Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92:178–192MathSciNetCrossRefMATH Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92:178–192MathSciNetCrossRefMATH
25.
Zurück zum Zitat Falk F (1983) Ginzburg–Landau theory of static domain walls in shape-memory alloys: Z. Phys B 51:177–185 Falk F (1983) Ginzburg–Landau theory of static domain walls in shape-memory alloys: Z. Phys B 51:177–185
26.
Zurück zum Zitat Cao W, Cross LE (1991) Theory of twin structures in ferroelectric perowskites with a first-order phase transition. Phys Rev B 44(1):5–12CrossRef Cao W, Cross LE (1991) Theory of twin structures in ferroelectric perowskites with a first-order phase transition. Phys Rev B 44(1):5–12CrossRef
27.
Zurück zum Zitat Zienkiewicz OC, De JP, Gago SR, Kelly DW (1983) The hierarchical concept in finite element analysis. Comput Struct 161–4:53–65CrossRef Zienkiewicz OC, De JP, Gago SR, Kelly DW (1983) The hierarchical concept in finite element analysis. Comput Struct 161–4:53–65CrossRef
28.
Zurück zum Zitat Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620MathSciNetCrossRefMATH Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620MathSciNetCrossRefMATH
Metadaten
Titel
A selective enhanced FE-method for phase field modeling of ferroelectric materials
verfasst von
M. Krauß
I. Münch
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1223-5

Weitere Artikel der Ausgabe 1/2016

Computational Mechanics 1/2016 Zur Ausgabe

Neuer Inhalt