Skip to main content
Erschienen in: Computational Mechanics 3/2017

15.05.2017 | Original Paper

A density-adaptive SPH method with kernel gradient correction for modeling explosive welding

verfasst von: M. B. Liu, Z. L. Zhang, D. L. Feng

Erschienen in: Computational Mechanics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Explosive welding involves processes like the detonation of explosive, impact of metal structures and strong fluid–structure interaction, while the whole process of explosive welding has not been well modeled before. In this paper, a novel smoothed particle hydrodynamics (SPH) model is developed to simulate explosive welding. In the SPH model, a kernel gradient correction algorithm is used to achieve better computational accuracy. A density adapting technique which can effectively treat large density ratio is also proposed. The developed SPH model is firstly validated by simulating a benchmark problem of one-dimensional TNT detonation and an impact welding problem. The SPH model is then successfully applied to simulate the whole process of explosive welding. It is demonstrated that the presented SPH method can capture typical physics in explosive welding including explosion wave, welding surface morphology, jet flow and acceleration of the flyer plate. The welding angle obtained from the SPH simulation agrees well with that from a kinematic analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cutler D (2006) What you can do with explosion welding. Weld J 5(4):177–199 Cutler D (2006) What you can do with explosion welding. Weld J 5(4):177–199
2.
Zurück zum Zitat Grignon F, Benson D, Vecchio KS, Meyers MA (2004) Explosive welding of aluminum to aluminum: analysis, computations and experiments. Int J Impact Eng 30:1333–1351CrossRef Grignon F, Benson D, Vecchio KS, Meyers MA (2004) Explosive welding of aluminum to aluminum: analysis, computations and experiments. Int J Impact Eng 30:1333–1351CrossRef
3.
Zurück zum Zitat Kacar R, Acarer M (2004) An investigation on the explosive cladding of 316L stainless steel–din-P355GH steel. J Mater Process Technol 152(1):91–96CrossRef Kacar R, Acarer M (2004) An investigation on the explosive cladding of 316L stainless steel–din-P355GH steel. J Mater Process Technol 152(1):91–96CrossRef
4.
Zurück zum Zitat Kahraman N, Gülenç B, Findik F (2005) Joining of titanium/stainless steel by explosive welding and effect on interface. J Mater Process Technol 169(2):127–133CrossRef Kahraman N, Gülenç B, Findik F (2005) Joining of titanium/stainless steel by explosive welding and effect on interface. J Mater Process Technol 169(2):127–133CrossRef
5.
Zurück zum Zitat Bahrani AS, Crossland B (1967) The mechanics of wave formation in explosive welding. Proc R Soc Lond A 296:123–136CrossRef Bahrani AS, Crossland B (1967) The mechanics of wave formation in explosive welding. Proc R Soc Lond A 296:123–136CrossRef
6.
Zurück zum Zitat Stanyukovich K (2002) Explosion physics, 3rd edn. Nauka, Moscow Stanyukovich K (2002) Explosion physics, 3rd edn. Nauka, Moscow
7.
Zurück zum Zitat Salem SAL, Lazari LG, Al-Hassani STS (1984) Explosive welding of flat plates in free flight. Int J Impact Eng 2(1):85–101CrossRef Salem SAL, Lazari LG, Al-Hassani STS (1984) Explosive welding of flat plates in free flight. Int J Impact Eng 2(1):85–101CrossRef
8.
Zurück zum Zitat Birnbaum NK, Cowler MS, Itoh M, Katayama M, Obata H (1987) AUTODYN—an interactive non-linear dynamic analysis program for microcomputers through supercomputers. In: Ninth international conference on structural mechanics in reactor technology, Lausanne, Switzerland Birnbaum NK, Cowler MS, Itoh M, Katayama M, Obata H (1987) AUTODYN—an interactive non-linear dynamic analysis program for microcomputers through supercomputers. In: Ninth international conference on structural mechanics in reactor technology, Lausanne, Switzerland
9.
Zurück zum Zitat Hageman LJ, Walsh JM, Hageman LJ, Walsh JM (1971) HELP, a multi-material Eulerian program for compressible fluid and elastic–plastic flows in two space dimensions and time, vol 1. System, Science and Software Inc, La Jolla Hageman LJ, Walsh JM, Hageman LJ, Walsh JM (1971) HELP, a multi-material Eulerian program for compressible fluid and elastic–plastic flows in two space dimensions and time, vol 1. System, Science and Software Inc, La Jolla
10.
Zurück zum Zitat Hallquist JO (1986) DYNA3D user’s manual (nonlinear dynamic analysis of structures in three dimensions). Lawrence Livermore National Laboratory, Livermore Hallquist JO (1986) DYNA3D user’s manual (nonlinear dynamic analysis of structures in three dimensions). Lawrence Livermore National Laboratory, Livermore
11.
Zurück zum Zitat Mousavi AAA, Burley SJ, Al-Hassani STS (2004) Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives. Int J Impact Eng 31(6):719–734CrossRef Mousavi AAA, Burley SJ, Al-Hassani STS (2004) Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives. Int J Impact Eng 31(6):719–734CrossRef
12.
Zurück zum Zitat Mousavi AAA, Al-Hassani STS (2008) Finite element simulation of explosively-driven plate impact with application to explosive welding. Mater Des 29(1):1–19CrossRef Mousavi AAA, Al-Hassani STS (2008) Finite element simulation of explosively-driven plate impact with application to explosive welding. Mater Des 29(1):1–19CrossRef
13.
Zurück zum Zitat Sui GF, Li JS, Sun F, Ma B, Li HW (2011) 3D finite element simulation of explosive welding of three-layer plates. Sci China Phys Mech Astron 54(5):890–896CrossRef Sui GF, Li JS, Sun F, Ma B, Li HW (2011) 3D finite element simulation of explosive welding of three-layer plates. Sci China Phys Mech Astron 54(5):890–896CrossRef
14.
Zurück zum Zitat Zhang X, Chen Z, Liu Y (2016) The material point method—a continuum-based particle method for extreme loading cases. Elsevier, Amsterdam Zhang X, Chen Z, Liu Y (2016) The material point method—a continuum-based particle method for extreme loading cases. Elsevier, Amsterdam
15.
Zurück zum Zitat Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci Eng 123(3):421–434CrossRef Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci Eng 123(3):421–434CrossRef
16.
Zurück zum Zitat Li SF, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34CrossRef Li SF, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34CrossRef
17.
Zurück zum Zitat Liu GR (2003) Mesh free methods moving beyond finite element method. Crc Press, Boca RatonMATH Liu GR (2003) Mesh free methods moving beyond finite element method. Crc Press, Boca RatonMATH
18.
Zurück zum Zitat Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3(1):3–80CrossRefMathSciNet Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3(1):3–80CrossRefMathSciNet
19.
Zurück zum Zitat Lian YP, Zhang X, Zhou X, Ma S, Zhao YL (2011) Numerical simulation of explosively driven metal by material point method. Int J Impact Eng 38(4):238–246CrossRef Lian YP, Zhang X, Zhou X, Ma S, Zhao YL (2011) Numerical simulation of explosively driven metal by material point method. Int J Impact Eng 38(4):238–246CrossRef
20.
Zurück zum Zitat Wang Y, Beom HG, Sun M, Lin S (2011) Numerical simulation of explosive welding using the material point method. Int J Impact Eng 38(1):51–60CrossRef Wang Y, Beom HG, Sun M, Lin S (2011) Numerical simulation of explosive welding using the material point method. Int J Impact Eng 38(1):51–60CrossRef
21.
Zurück zum Zitat Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389CrossRefMATH Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389CrossRefMATH
22.
Zurück zum Zitat Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRefMATH Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRefMATH
23.
Zurück zum Zitat Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024CrossRef Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024CrossRef
24.
Zurück zum Zitat Feng DL, Liu MB, Li HQ, Liu GR (2013) Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and penetration effects. Comput Fluids 86(7):77–85CrossRefMATH Feng DL, Liu MB, Li HQ, Liu GR (2013) Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and penetration effects. Comput Fluids 86(7):77–85CrossRefMATH
25.
Zurück zum Zitat Liu MB, Liu GR, Lam KY (2006) Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength. Shock Waves 15(1):21–29CrossRefMATH Liu MB, Liu GR, Lam KY (2006) Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength. Shock Waves 15(1):21–29CrossRefMATH
26.
Zurück zum Zitat Liu MB, Liu GR, Lam KY, Zong Z (2003) Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput Mech 30(2):106–118CrossRefMATH Liu MB, Liu GR, Lam KY, Zong Z (2003) Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput Mech 30(2):106–118CrossRefMATH
27.
Zurück zum Zitat Liu MB, Liu GR, Zong Z, Lam KY (2003) Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput Fluids 32(3):305–322CrossRefMATH Liu MB, Liu GR, Zong Z, Lam KY (2003) Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput Fluids 32(3):305–322CrossRefMATH
28.
Zurück zum Zitat Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408CrossRefMATHMathSciNet Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408CrossRefMATHMathSciNet
29.
Zurück zum Zitat Swegle JW, Attaway SW (1995) On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput Mech 17(3):151–168CrossRefMATH Swegle JW, Attaway SW (1995) On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput Mech 17(3):151–168CrossRefMATH
30.
Zurück zum Zitat Li XJ, Mo F, Wang XH, Wang B, Liu KX (2012) Numerical study on mechanism of explosive welding. Sci Technol Weld Join 17(1):36–41CrossRef Li XJ, Mo F, Wang XH, Wang B, Liu KX (2012) Numerical study on mechanism of explosive welding. Sci Technol Weld Join 17(1):36–41CrossRef
31.
Zurück zum Zitat Nassiri A, Kinsey B (2016) Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE). J Manuf Process 24 Nassiri A, Kinsey B (2016) Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE). J Manuf Process 24
32.
Zurück zum Zitat Shao JR, Li HQ, Liu GR, Liu MB (2012) An improved SPH method for modeling liquid sloshing dynamics. Comput Struct 100–101(6):18–26CrossRef Shao JR, Li HQ, Liu GR, Liu MB (2012) An improved SPH method for modeling liquid sloshing dynamics. Comput Struct 100–101(6):18–26CrossRef
33.
Zurück zum Zitat Liu MB, Li SM (2016) On the modeling of viscous incompressible flows with smoothed particle hydrodynamics. J Hydrodyn 28(5):731–745CrossRef Liu MB, Li SM (2016) On the modeling of viscous incompressible flows with smoothed particle hydrodynamics. J Hydrodyn 28(5):731–745CrossRef
34.
Zurück zum Zitat Zukas JA (1990) High velocity impact dynamics. Wiley, London Zukas JA (1990) High velocity impact dynamics. Wiley, London
35.
Zurück zum Zitat Lee EL, Hornig HC, Kury JW (1967) Adiabatic expansion of high explosive detonation products. Livermore Lawrence Radiation Lab, California University, Livermore Lee EL, Hornig HC, Kury JW (1967) Adiabatic expansion of high explosive detonation products. Livermore Lawrence Radiation Lab, California University, Livermore
36.
Zurück zum Zitat Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of seventh international symposium on ballistics, The Hague, Netherlands Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of seventh international symposium on ballistics, The Hague, Netherlands
37.
Zurück zum Zitat Zhou CE, Liu GR, Lou KY (2007) Three-dimensional penetration simulation using smoothed particle hydrodynamics. Int J Comput Methods 4:671–691CrossRefMATHMathSciNet Zhou CE, Liu GR, Lou KY (2007) Three-dimensional penetration simulation using smoothed particle hydrodynamics. Int J Comput Methods 4:671–691CrossRefMATHMathSciNet
38.
39.
Zurück zum Zitat Ren B, Fan H, Bergel GL, Regueiro RA, Lai X, Li S (2015) A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves. Comput Mech 55(2):287–302CrossRefMATHMathSciNet Ren B, Fan H, Bergel GL, Regueiro RA, Lai X, Li S (2015) A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves. Comput Mech 55(2):287–302CrossRefMATHMathSciNet
40.
Zurück zum Zitat Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190(1–2):225–239CrossRefMATH Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190(1–2):225–239CrossRefMATH
41.
Zurück zum Zitat Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29(12):1252–1270CrossRefMATH Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29(12):1252–1270CrossRefMATH
42.
Zurück zum Zitat Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278CrossRefMATH Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278CrossRefMATH
44.
Zurück zum Zitat Colagrossi A (2003) A meshless Lagrangian method for free-surface and interface flows with fragmentation. Universita di Roma, La Sapienza Colagrossi A (2003) A meshless Lagrangian method for free-surface and interface flows with fragmentation. Universita di Roma, La Sapienza
45.
Zurück zum Zitat Monaghan JJ (2005) Smoothed particle hydrodynamics. World Scientific, SingaporeMATH Monaghan JJ (2005) Smoothed particle hydrodynamics. World Scientific, SingaporeMATH
46.
Zurück zum Zitat Benz W (1990) Smooth particle hydrodynamics—a review. In: Buchler JR (ed) Numerical modelling of nonlinear stellar pulsations: problems and prospects. Kluwer Academic, Boston Benz W (1990) Smooth particle hydrodynamics—a review. In: Buchler JR (ed) Numerical modelling of nonlinear stellar pulsations: problems and prospects. Kluwer Academic, Boston
47.
Zurück zum Zitat Mader CL (1979) Numerical modeling of detonation. University of California Press, BerkeleyMATH Mader CL (1979) Numerical modeling of detonation. University of California Press, BerkeleyMATH
48.
Zurück zum Zitat Carpenter SH, Wittman RH (1967) Relationships of explosive welding parameters to material properties and geometry factors. University of Denver, Denver Carpenter SH, Wittman RH (1967) Relationships of explosive welding parameters to material properties and geometry factors. University of Denver, Denver
Metadaten
Titel
A density-adaptive SPH method with kernel gradient correction for modeling explosive welding
verfasst von
M. B. Liu
Z. L. Zhang
D. L. Feng
Publikationsdatum
15.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1420-5

Weitere Artikel der Ausgabe 3/2017

Computational Mechanics 3/2017 Zur Ausgabe

Neuer Inhalt