Skip to main content
Erschienen in: Neural Computing and Applications 7/2015

01.10.2015 | Original Article

Computational modeling with sensitivity analysis: case study velocity distribution of natural rivers

verfasst von: Ali Osman Pektas

Erschienen in: Neural Computing and Applications | Ausgabe 7/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Determining the velocity profile of an open channel is essential in many hydraulic workspaces such as channel improvement studies, sediment modeling, and energy and turbidity calculations. Since the field observations are labor intensive and time-consuming, many empirical equations have been used for many years. Additionally, many data-based modeling studies have been conducted for both natural rivers and experimental channels. There are two objectives of this study. The first one consists of developing accurate models and criticizing the model performances based on the observational velocity dataset. Hence, classification and regression tree (C&RT), artificial neural network (ANN), and multilinear stepwise regression models are used with different input sets and the models are compared. The second objective is to gain a brief insight about the relationships of the velocity distribution model parameters and determining the significant variables for usage of further modeling studies by considering the co-linearity effects. The relative importance of input variables is investigated on settled models by using sensitivity analysis. The results of the sensitivity analysis indicated that for low-slope natural river studies, instead of using superfluous variables, using only four parameters (U sh , z/H, y/T and z/Y) is adequate to obtain accurate models. The predictive performances of C&RT model and the ANN model were found to be very close to each other, while the multilinear models appeared insufficient. The four variable input set is found superior to other input sets, and the variable water surface velocity is found the most significant parameter across all models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Araujo JC, Chaudhry FH (1996) Experimental evaluation of 2-D entropy model for open channel flow. J Hydraulic Eng 124(10):1064–1067CrossRef Araujo JC, Chaudhry FH (1996) Experimental evaluation of 2-D entropy model for open channel flow. J Hydraulic Eng 124(10):1064–1067CrossRef
2.
Zurück zum Zitat Kirkgoz MS, Ardiclioglu M (1997) Velocity profiles of developing and developed open channel flow. J Hydraulic Eng 123(12):1099–1105CrossRef Kirkgoz MS, Ardiclioglu M (1997) Velocity profiles of developing and developed open channel flow. J Hydraulic Eng 123(12):1099–1105CrossRef
3.
Zurück zum Zitat Sill BL (1982) New flat plate turbulent velocity profiles. J Hydraulic Eng 108(1):1–15 Sill BL (1982) New flat plate turbulent velocity profiles. J Hydraulic Eng 108(1):1–15
5.
Zurück zum Zitat Bahramifara A, Shirkhanib R, Mohammadic M (2013) An ANFIS-based approach for predicting the manning roughness coefficient in alluvial channels at the bank-full stage. IJE Trans B Appl 26(2):177–186 Bahramifara A, Shirkhanib R, Mohammadic M (2013) An ANFIS-based approach for predicting the manning roughness coefficient in alluvial channels at the bank-full stage. IJE Trans B Appl 26(2):177–186
6.
Zurück zum Zitat Ardıçlıoğlu M, Genç O, Kalin L, Ağıralioğlu N (2012) Investigation of flow properties in natural streams by entropy concept. Water Environ J 26:147–154CrossRef Ardıçlıoğlu M, Genç O, Kalin L, Ağıralioğlu N (2012) Investigation of flow properties in natural streams by entropy concept. Water Environ J 26:147–154CrossRef
7.
Zurück zum Zitat Samandar A (2011) A model of adaptive neural-based fuzzy inference system (ANFIS) for prediction of friction coefficient in open channel flow. Sci Res Essays 6(5):1020–1027 Samandar A (2011) A model of adaptive neural-based fuzzy inference system (ANFIS) for prediction of friction coefficient in open channel flow. Sci Res Essays 6(5):1020–1027
8.
Zurück zum Zitat Snell J, Sivapalan M (1995) Application of the meta-channel concept: construction of the meta-channel hydraulic geometry for a natural catchment. Hydrol Process 9:485–505CrossRef Snell J, Sivapalan M (1995) Application of the meta-channel concept: construction of the meta-channel hydraulic geometry for a natural catchment. Hydrol Process 9:485–505CrossRef
9.
Zurück zum Zitat Saco PM, Kumar P (2002) Kinematic dispersion in stream networks: 1 Coupling hydraulic and network geometry. Water Resour Res 38(11):1244 Saco PM, Kumar P (2002) Kinematic dispersion in stream networks: 1 Coupling hydraulic and network geometry. Water Resour Res 38(11):1244
10.
Zurück zum Zitat Paik K, Kumar P (2004) Hydraulic geometry and the nonlinearity of the network instantaneous response. Water Resour Res 40:W03602. doi:10.1029/2003WR002821 Paik K, Kumar P (2004) Hydraulic geometry and the nonlinearity of the network instantaneous response. Water Resour Res 40:W03602. doi:10.​1029/​2003WR002821
11.
Zurück zum Zitat Paik K, Kumar P (2010) Optimality approaches to describe characteristic fluvial patterns on landscapes. Philos Trans R Soc B 365:1387–1395CrossRef Paik K, Kumar P (2010) Optimality approaches to describe characteristic fluvial patterns on landscapes. Philos Trans R Soc B 365:1387–1395CrossRef
12.
Zurück zum Zitat Ozturk F, Apaydın H, Walling DE (2001) Suspended sediment loads through flood events for streams of sakarya Basin. Turkish J Eng Environ 25:643–650 Ozturk F, Apaydın H, Walling DE (2001) Suspended sediment loads through flood events for streams of sakarya Basin. Turkish J Eng Environ 25:643–650
13.
Zurück zum Zitat Noor H, Fazli S, Alibakhshi SM (2013) Evaluation of the relationships between runoff-rainfall-sediment related nutrient loss (a case study: Kojour Watershed, Iran). Soil Water Res 8(4):172–177 Noor H, Fazli S, Alibakhshi SM (2013) Evaluation of the relationships between runoff-rainfall-sediment related nutrient loss (a case study: Kojour Watershed, Iran). Soil Water Res 8(4):172–177
14.
Zurück zum Zitat Fulazzakya MA, Khamiduna MH, Yusof B (2013) Sediment traps from synthetic construction site stormwater runoff by grassed filter strip. J Hydrol 502:53–61CrossRef Fulazzakya MA, Khamiduna MH, Yusof B (2013) Sediment traps from synthetic construction site stormwater runoff by grassed filter strip. J Hydrol 502:53–61CrossRef
15.
Zurück zum Zitat Hadadin N, Tarawneh Z, Shatanawi K, Banihani Q, Hamdi M (2013) Hydrological analysis for floodplain hazard of Jeddah’s drainage basin, Saudi Arabia. Arab J For Sci Eng 38(12):3275–3287CrossRef Hadadin N, Tarawneh Z, Shatanawi K, Banihani Q, Hamdi M (2013) Hydrological analysis for floodplain hazard of Jeddah’s drainage basin, Saudi Arabia. Arab J For Sci Eng 38(12):3275–3287CrossRef
16.
Zurück zum Zitat Mekanik F, Imteaz MA, Gato-Trinidad S, Elmahdi A (2013) Multiple regression and artificial neural network for long-term rainfall forecasting using large scale climate modes. J Hydrol 503:11–12CrossRef Mekanik F, Imteaz MA, Gato-Trinidad S, Elmahdi A (2013) Multiple regression and artificial neural network for long-term rainfall forecasting using large scale climate modes. J Hydrol 503:11–12CrossRef
17.
Zurück zum Zitat Davranche A, Poulinb B, Lefebvre G (2013) Mapping flooding regimes in Camargue wetlands using seasonal multispectral data. Remote Sens Environ 138:165–171CrossRef Davranche A, Poulinb B, Lefebvre G (2013) Mapping flooding regimes in Camargue wetlands using seasonal multispectral data. Remote Sens Environ 138:165–171CrossRef
18.
Zurück zum Zitat Razavi T, Coulibaly P (2013) Streamflow prediction in ungauged basins: review of regionalization methods. J Hydrol Eng 18(8):958–975CrossRef Razavi T, Coulibaly P (2013) Streamflow prediction in ungauged basins: review of regionalization methods. J Hydrol Eng 18(8):958–975CrossRef
19.
Zurück zum Zitat Li JZ, Feng P, Wei ZZ (2013) Incorporating the data of different watersheds to estimate the effects of land use change on flood peak and volume using multi-linear regression. Mitig Adapt Strat Glob Change 18(8):1183–1196CrossRef Li JZ, Feng P, Wei ZZ (2013) Incorporating the data of different watersheds to estimate the effects of land use change on flood peak and volume using multi-linear regression. Mitig Adapt Strat Glob Change 18(8):1183–1196CrossRef
20.
Zurück zum Zitat Bhattacharya B, Price RK, Solomatine DP (2007) Machine learning approach to modelling, sediment transport. J Hydraulic Eng ASCE 133(4):440–450CrossRef Bhattacharya B, Price RK, Solomatine DP (2007) Machine learning approach to modelling, sediment transport. J Hydraulic Eng ASCE 133(4):440–450CrossRef
21.
Zurück zum Zitat Oehler F, Coco G, Green MO, Bryan KR (2012) A data-driven approach to predict suspended-sediment reference concentration under non-breaking waves. Cont Shelf Res 46:96–106CrossRef Oehler F, Coco G, Green MO, Bryan KR (2012) A data-driven approach to predict suspended-sediment reference concentration under non-breaking waves. Cont Shelf Res 46:96–106CrossRef
23.
Zurück zum Zitat Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178:389–397CrossRef Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178:389–397CrossRef
24.
Zurück zum Zitat Kemp JS, Zaradic P, Hansen F (2007) An approach for determining relative input parameter importance and significance in artificial neural networks. Ecol Model 204:326–334CrossRef Kemp JS, Zaradic P, Hansen F (2007) An approach for determining relative input parameter importance and significance in artificial neural networks. Ecol Model 204:326–334CrossRef
25.
Zurück zum Zitat Pektaş AO, Erdik T (2014) Peak discharge prediction due to embankment dam break by using sensitivity analysis based ANN. KSCE J Civil Eng 18:1868–1876CrossRef Pektaş AO, Erdik T (2014) Peak discharge prediction due to embankment dam break by using sensitivity analysis based ANN. KSCE J Civil Eng 18:1868–1876CrossRef
26.
Zurück zum Zitat Duricic J, Erdik T, Pektaş AO, van Gelder PH (2013) Mean normalized force computation for different types of obstacles due to dam break using statistical techniques. Water 5:560–577CrossRef Duricic J, Erdik T, Pektaş AO, van Gelder PH (2013) Mean normalized force computation for different types of obstacles due to dam break using statistical techniques. Water 5:560–577CrossRef
27.
Zurück zum Zitat Murtaugh PA (2009) Performance of several variable-selection methods applied to real ecological data. Ecol Lett 12:1061–1068CrossRef Murtaugh PA (2009) Performance of several variable-selection methods applied to real ecological data. Ecol Lett 12:1061–1068CrossRef
28.
Zurück zum Zitat Karman TV (1930). Meshanische Ahnlichkeit und Turbulenz. GöttingerNachrichten, Math, Phys, Klasse, pp 58–60, Germany Karman TV (1930). Meshanische Ahnlichkeit und Turbulenz. GöttingerNachrichten, Math, Phys, Klasse, pp 58–60, Germany
29.
Zurück zum Zitat Prandtl L (1932) Recent results of turbulent research, translation by National Advisory Committee for Aeronautics, TM no. 720 (originally published in German in 1933) Prandtl L (1932) Recent results of turbulent research, translation by National Advisory Committee for Aeronautics, TM no. 720 (originally published in German in 1933)
30.
Zurück zum Zitat Song T, Graf WH (1996) Velocity and turbulence distribution in unsteady open channel flows. J Hydraulic Eng 122(3):141–154CrossRef Song T, Graf WH (1996) Velocity and turbulence distribution in unsteady open channel flows. J Hydraulic Eng 122(3):141–154CrossRef
31.
Zurück zum Zitat Kundu S, Ghoshal K (2012) Velocity distribution in open channels: combination of log-law and parabolic-law. World Acad Sci Eng Technol 68:2012 Kundu S, Ghoshal K (2012) Velocity distribution in open channels: combination of log-law and parabolic-law. World Acad Sci Eng Technol 68:2012
32.
Zurück zum Zitat Chanson H (2004) The hydraulics of open channel flow: an introduction, 2nd ed. Elsevier Butterworth-Heinemann, Oxford, xlvii, p 585 Chanson H (2004) The hydraulics of open channel flow: an introduction, 2nd ed. Elsevier Butterworth-Heinemann, Oxford, xlvii, p 585
33.
Zurück zum Zitat Montes S (1998) Hydraulics of open channel flow. ASCE Press, Reston, VA, viii, p 697 Montes S (1998) Hydraulics of open channel flow. ASCE Press, Reston, VA, viii, p 697
34.
Zurück zum Zitat Genc O (2012) The investigation of flow properties in rivers by entropy method. Ph.D. Thesis, accepted in October 2012, Istanbul Technical University Genc O (2012) The investigation of flow properties in rivers by entropy method. Ph.D. Thesis, accepted in October 2012, Istanbul Technical University
35.
Zurück zum Zitat Buckingham E (1914) On physically similar systems: illustrations of the use of dimensional equations. Phys Rev 4(4):345–376CrossRef Buckingham E (1914) On physically similar systems: illustrations of the use of dimensional equations. Phys Rev 4(4):345–376CrossRef
36.
Zurück zum Zitat SPSS Modeller 15 (2012) IBM SPSS Modeller 15 Algorithms, Guide, Copyright IBM Corporation 1994, 2012 SPSS Modeller 15 (2012) IBM SPSS Modeller 15 Algorithms, Guide, Copyright IBM Corporation 1994, 2012
37.
Zurück zum Zitat IBM SPSS Decision Trees 20 (2011) Copyright SPSS Inc. 1989, 2011 IBM SPSS Decision Trees 20 (2011) Copyright SPSS Inc. 1989, 2011
Metadaten
Titel
Computational modeling with sensitivity analysis: case study velocity distribution of natural rivers
verfasst von
Ali Osman Pektas
Publikationsdatum
01.10.2015
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 7/2015
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-1830-2

Weitere Artikel der Ausgabe 7/2015

Neural Computing and Applications 7/2015 Zur Ausgabe

Premium Partner