Skip to main content
Erschienen in: Neural Computing and Applications 6/2016

01.08.2016 | Original Article

Group recursive discriminant subspace learning with image set decomposition

verfasst von: Fei Wu, Xiao-Yuan Jing, Yong-Fang Yao, Dong Yue, Jun Chen

Erschienen in: Neural Computing and Applications | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Discriminant subspace learning is a widely used feature extraction technique for image recognition, since it can extract effective discriminant features by employing the class information and Fisher criterion. A crucial research topic on this technique is how to rapidly extract sufficient and effective features. Recently, recursive discriminant subspace learning technique has attracted lots of research interest because it can acquire sufficient discriminant features. Generally, it recursively decomposes image samples and extracts features from a number of decomposed sample sets. The major drawback of most recursive discriminant subspace learning methods is that they calculate the projective vectors one by one, such that they suffer from big computational costs. The recursive modified linear discriminant method and the incremental recursive Fisher linear discriminant method employ a simple solution for this problem, which calculates the class number minus one projective vectors in each recursion. However, this solution produces the unfavorable projective vectors with poor discriminant capabilities, and it cannot provide the terminating criterion for recursive computation and make the projective vectors orthogonal. In this paper, we propose a novel recursive learning approach that is group recursive discriminant subspace learning, which can rapidly learn multiple orthogonal subspaces with each spanned by a group of projective vectors. And we present a rule to select favorable projective vectors per recursion and provide a matrix-form-based terminating criterion to determine the number of recursions. Experiments on three widely used databases demonstrate the effectiveness and efficiency of the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chen Y, Zheng WS, Xu XH, Lai JH (2013) Discriminant subspace learning constrained by locally statistical uncorrelation for face recognition. Neural Netw 42:28–43CrossRefMATH Chen Y, Zheng WS, Xu XH, Lai JH (2013) Discriminant subspace learning constrained by locally statistical uncorrelation for face recognition. Neural Netw 42:28–43CrossRefMATH
2.
Zurück zum Zitat Abiantun R, Prabhu U, Savvides M (2014) Sparse feature extraction for pose-tolerant face recognition. IEEE Trans Pattern Anal Mach Int 36(10):2061–2073CrossRef Abiantun R, Prabhu U, Savvides M (2014) Sparse feature extraction for pose-tolerant face recognition. IEEE Trans Pattern Anal Mach Int 36(10):2061–2073CrossRef
3.
Zurück zum Zitat Kong A, Zhang D, Kamel M (2009) A survey of palmprint recognition. Pattern Recognit 42(7):1408–1418CrossRef Kong A, Zhang D, Kamel M (2009) A survey of palmprint recognition. Pattern Recognit 42(7):1408–1418CrossRef
4.
Zurück zum Zitat Wu X, Zhao Q, Bu W (2014) A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors. Pattern Recognit 47(10):3314–3326CrossRef Wu X, Zhao Q, Bu W (2014) A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors. Pattern Recognit 47(10):3314–3326CrossRef
5.
Zurück zum Zitat Belhumeur PN, Hespanha JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Int 19(7):711–720CrossRef Belhumeur PN, Hespanha JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Int 19(7):711–720CrossRef
6.
Zurück zum Zitat Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef
7.
Zurück zum Zitat Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang HJ (2007) Multilinear discriminant analysis for face recognition. IEEE Trans Image Process 16(1):212–220MathSciNetCrossRef Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang HJ (2007) Multilinear discriminant analysis for face recognition. IEEE Trans Image Process 16(1):212–220MathSciNetCrossRef
8.
Zurück zum Zitat Hamsici OC, Martinez AM (2008) Bayes optimality in linear discriminant analysis. IEEE Trans Pattern Anal Mach Int 30(4):647–657CrossRef Hamsici OC, Martinez AM (2008) Bayes optimality in linear discriminant analysis. IEEE Trans Pattern Anal Mach Int 30(4):647–657CrossRef
9.
Zurück zum Zitat Yang S, Lin M, Hou C, Zhang C, Wu Y (2012) A general framework for transfer sparse subspace learning. Neural Comput Appl 21(7):1801–1817CrossRef Yang S, Lin M, Hou C, Zhang C, Wu Y (2012) A general framework for transfer sparse subspace learning. Neural Comput Appl 21(7):1801–1817CrossRef
10.
Zurück zum Zitat Zhao C, Lai Z, Miao D, Wei Z, Liu C (2014) Graph embedding discriminant analysis for face recognition. Neural Comput Appl 24(7–8):1697–1706CrossRef Zhao C, Lai Z, Miao D, Wei Z, Liu C (2014) Graph embedding discriminant analysis for face recognition. Neural Comput Appl 24(7–8):1697–1706CrossRef
11.
Zurück zum Zitat Cevikalp H, Neamtu M, Wilkes M, Barkana A (2005) Discriminative common vectors for face recognition. IEEE Trans Pattern Anal Mach Int 27(1):4–13CrossRef Cevikalp H, Neamtu M, Wilkes M, Barkana A (2005) Discriminative common vectors for face recognition. IEEE Trans Pattern Anal Mach Int 27(1):4–13CrossRef
12.
Zurück zum Zitat Yang J, Yang J (2002) Generalized K–L transform based combined feature extraction. Pattern Recognit 35(1):295–297CrossRefMATH Yang J, Yang J (2002) Generalized K–L transform based combined feature extraction. Pattern Recognit 35(1):295–297CrossRefMATH
13.
Zurück zum Zitat Wang X, Tang X (2004) Dual-space linear discriminant analysis for face recognition. In: IEEE conference on computer vision and pattern recognition, pp 564–569 Wang X, Tang X (2004) Dual-space linear discriminant analysis for face recognition. In: IEEE conference on computer vision and pattern recognition, pp 564–569
14.
Zurück zum Zitat Tao D, Li X, Wu X, Maybank SJ (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Int 29(10):1700–1715CrossRef Tao D, Li X, Wu X, Maybank SJ (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Int 29(10):1700–1715CrossRef
15.
Zurück zum Zitat Su Y, Shan S, Chen X, Gao W (2008) Classifiability-based optimal discriminatory projection pursuit. In: IEEE conference on computer vision and pattern recognition, pp 1–7 Su Y, Shan S, Chen X, Gao W (2008) Classifiability-based optimal discriminatory projection pursuit. In: IEEE conference on computer vision and pattern recognition, pp 1–7
16.
Zurück zum Zitat Wang R, Chen X (2009) Manifold discriminant analysis. In: IEEE conference on computer vision and pattern recognition, pp 429–436 Wang R, Chen X (2009) Manifold discriminant analysis. In: IEEE conference on computer vision and pattern recognition, pp 429–436
17.
Zurück zum Zitat Guan N, Tao D, Luo Z, Yuan B (2011) Manifold regularized discriminative non-negative matrix factorization with fast gradient descent. IEEE Trans Image Process 20(7):2030–2048MathSciNetCrossRef Guan N, Tao D, Luo Z, Yuan B (2011) Manifold regularized discriminative non-negative matrix factorization with fast gradient descent. IEEE Trans Image Process 20(7):2030–2048MathSciNetCrossRef
18.
Zurück zum Zitat Luo D, Ding CH, Huang H (2011) Linear discriminant analysis: new formulations and overfit analysis. In: AAAI conference on artificial intelligence, pp 417–422 Luo D, Ding CH, Huang H (2011) Linear discriminant analysis: new formulations and overfit analysis. In: AAAI conference on artificial intelligence, pp 417–422
19.
Zurück zum Zitat Zhong F, Zhang J (2013) Linear discriminant analysis based on L1-norm maximization. IEEE Trans Image Process 22(8):3018–3027MathSciNetCrossRef Zhong F, Zhang J (2013) Linear discriminant analysis based on L1-norm maximization. IEEE Trans Image Process 22(8):3018–3027MathSciNetCrossRef
20.
Zurück zum Zitat Chen S, Liu C (2014) Clustering-based discriminant analysis for eye detection. IEEE Trans Image Process 23(4):1629–1638MathSciNetCrossRef Chen S, Liu C (2014) Clustering-based discriminant analysis for eye detection. IEEE Trans Image Process 23(4):1629–1638MathSciNetCrossRef
21.
Zurück zum Zitat Kong D, Ding C (2014) Pairwise-covariance linear discriminant analysis. In: AAAI conference on artificial intelligence, pp 1925–1931 Kong D, Ding C (2014) Pairwise-covariance linear discriminant analysis. In: AAAI conference on artificial intelligence, pp 1925–1931
22.
Zurück zum Zitat Iwata S, Nakatsukasa Y, Takeda A (2014) Global optimization methods for extended Fisher discriminant analysis. In: International conference on artificial intelligence and statistics, pp 411–419 Iwata S, Nakatsukasa Y, Takeda A (2014) Global optimization methods for extended Fisher discriminant analysis. In: International conference on artificial intelligence and statistics, pp 411–419
23.
Zurück zum Zitat Yang M, Sun S (2014) Multi-view uncorrelated linear discriminant analysis with applications to handwritten digit recognition. In: International joint conference on neural networks, pp 4175–4181 Yang M, Sun S (2014) Multi-view uncorrelated linear discriminant analysis with applications to handwritten digit recognition. In: International joint conference on neural networks, pp 4175–4181
24.
Zurück zum Zitat Li S, Fu Y (2014) Robust subspace discovery through supervised low-rank constraints. In: SIAM international conference on data mining, pp 163–171 Li S, Fu Y (2014) Robust subspace discovery through supervised low-rank constraints. In: SIAM international conference on data mining, pp 163–171
25.
Zurück zum Zitat Xiang C, Fan XA, Lee TH (2006) Face recognition using recursive Fisher linear discriminant. IEEE Trans Image Process 15(8):2097–2105CrossRef Xiang C, Fan XA, Lee TH (2006) Face recognition using recursive Fisher linear discriminant. IEEE Trans Image Process 15(8):2097–2105CrossRef
26.
Zurück zum Zitat Wang J, Xu Y, Zhang D, You J (2010) An efficient method for computing orthogonal discriminant vectors. Neurocomputing 73(10):2168–2176CrossRef Wang J, Xu Y, Zhang D, You J (2010) An efficient method for computing orthogonal discriminant vectors. Neurocomputing 73(10):2168–2176CrossRef
27.
Zurück zum Zitat Xiang C, Huang D (2006) Feature extraction using recursive cluster-based linear discriminant with application to face recognition. IEEE Trans Image Process 15(12):3824–3832MathSciNetCrossRef Xiang C, Huang D (2006) Feature extraction using recursive cluster-based linear discriminant with application to face recognition. IEEE Trans Image Process 15(12):3824–3832MathSciNetCrossRef
28.
Zurück zum Zitat Ohta R, Ozawa S (2009) An incremental learning algorithm of recursive Fisher linear discriminant. In: International joint conference on neural networks, pp 2310–2315 Ohta R, Ozawa S (2009) An incremental learning algorithm of recursive Fisher linear discriminant. In: International joint conference on neural networks, pp 2310–2315
29.
Zurück zum Zitat Ohta R, Ozawa S (2013) An improvement of incremental recursive Fisher linear discriminant for online feature extraction. Electron Commun Jpn 96(4):29–40CrossRef Ohta R, Ozawa S (2013) An improvement of incremental recursive Fisher linear discriminant for online feature extraction. Electron Commun Jpn 96(4):29–40CrossRef
30.
Zurück zum Zitat Ye QL, Zhao CX, Zhang HF, Chen XB (2012) Recursive “concave–convex” Fisher linear discriminant with applications to face, handwritten digit and terrain recognition. Pattern Recognit 45(1):54–65CrossRefMATH Ye QL, Zhao CX, Zhang HF, Chen XB (2012) Recursive “concave–convex” Fisher linear discriminant with applications to face, handwritten digit and terrain recognition. Pattern Recognit 45(1):54–65CrossRefMATH
31.
Zurück zum Zitat Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W (2005) Overview of the face recognition grand challenge. In: IEEE conference on computer vision and pattern recognition, pp 947–954 Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W (2005) Overview of the face recognition grand challenge. In: IEEE conference on computer vision and pattern recognition, pp 947–954
32.
Zurück zum Zitat Georghiades AS, Belhumeur PN, Kriegman D (2000) From few to many: generative models for recognition under variable pose and illumination. In: IEEE international conference on automatic face and gesture recognition, pp 277–284 Georghiades AS, Belhumeur PN, Kriegman D (2000) From few to many: generative models for recognition under variable pose and illumination. In: IEEE international conference on automatic face and gesture recognition, pp 277–284
33.
Zurück zum Zitat Zhang D, Kong WK, You J, Wong M (2003) Online palmprint identification. IEEE Trans Pattern Anal Mach Int 25(9):1041–1150CrossRef Zhang D, Kong WK, You J, Wong M (2003) Online palmprint identification. IEEE Trans Pattern Anal Mach Int 25(9):1041–1150CrossRef
34.
Zurück zum Zitat Cai D, He X, Han J, Zhang HJ (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614CrossRef Cai D, He X, Han J, Zhang HJ (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614CrossRef
35.
Zurück zum Zitat Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Int 29(12):2143–2156CrossRef Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Int 29(12):2143–2156CrossRef
36.
Zurück zum Zitat Kim TK, Kittler J, Cipolla R (2010) On-line learning of mutually orthogonal subspaces for face recognition by image sets. IEEE Trans Image Process 19(4):1067–1074MathSciNetCrossRef Kim TK, Kittler J, Cipolla R (2010) On-line learning of mutually orthogonal subspaces for face recognition by image sets. IEEE Trans Image Process 19(4):1067–1074MathSciNetCrossRef
37.
Zurück zum Zitat Gao Q, Ma J, Zhang H, Gao X, Liu Y (2013) Stable orthogonal local discriminant embedding for linear dimensionality reduction. IEEE Trans Image Process 22(7):2521–2531CrossRef Gao Q, Ma J, Zhang H, Gao X, Liu Y (2013) Stable orthogonal local discriminant embedding for linear dimensionality reduction. IEEE Trans Image Process 22(7):2521–2531CrossRef
38.
Zurück zum Zitat Chen Y, Xu XH (2014) Supervised orthogonal discriminant subspace projects learning for face recognition. Neural Netw 50:33–46CrossRefMATH Chen Y, Xu XH (2014) Supervised orthogonal discriminant subspace projects learning for face recognition. Neural Netw 50:33–46CrossRefMATH
39.
Zurück zum Zitat Ye QL, Ye N, Zhang HF, Zhao CX (2014) Fast orthogonal linear discriminant analysis with applications to image classification. In: International joint conference on neural networks, pp 299–306 Ye QL, Ye N, Zhang HF, Zhao CX (2014) Fast orthogonal linear discriminant analysis with applications to image classification. In: International joint conference on neural networks, pp 299–306
40.
Zurück zum Zitat Jing XY, Zhang D (2004) A face and palmprint recognition approach based on discriminant DCT feature extraction. IEEE Trans Syst Man Cybern B 34(6):2405–2415CrossRef Jing XY, Zhang D (2004) A face and palmprint recognition approach based on discriminant DCT feature extraction. IEEE Trans Syst Man Cybern B 34(6):2405–2415CrossRef
41.
Zurück zum Zitat Jing XY, Wong HS, Zhang D (2006) Face recognition based on 2D Fisherface approach. Pattern Recognit 39(4):707–710CrossRefMATH Jing XY, Wong HS, Zhang D (2006) Face recognition based on 2D Fisherface approach. Pattern Recognit 39(4):707–710CrossRefMATH
42.
Zurück zum Zitat Draper BA, Yambor WS, Beveridge JR (2002) Analyzing PCA-based face recognition algorithms: eigenvector selection and distance measures. In: Empirical evaluation methods in computer vision, pp 1–15 Draper BA, Yambor WS, Beveridge JR (2002) Analyzing PCA-based face recognition algorithms: eigenvector selection and distance measures. In: Empirical evaluation methods in computer vision, pp 1–15
Metadaten
Titel
Group recursive discriminant subspace learning with image set decomposition
verfasst von
Fei Wu
Xiao-Yuan Jing
Yong-Fang Yao
Dong Yue
Jun Chen
Publikationsdatum
01.08.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 6/2016
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-1966-0

Weitere Artikel der Ausgabe 6/2016

Neural Computing and Applications 6/2016 Zur Ausgabe