Skip to main content
Erschienen in: Neural Computing and Applications 1/2019

28.04.2017 | Original Article

Application of ANN and RSM techniques for modeling electrospinning process of polycaprolactone

verfasst von: Tahere Khatti, Hossein Naderi-Manesh, Seyed Mehdi Kalantar

Erschienen in: Neural Computing and Applications | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to increasing application of nanofibers in many research fields, comprehensive knowledge of the electrospinning process as the most popular method of fiber production is essential. Modeling techniques are valuable tools for managing contributing factors in the electrospinning process, prior to the more expensive experimental techniques. In the present research, effective parameters on the diameter of electrospun polycaprolactone (PCL) nanofibers are analyzed using artificial neural networks (ANN) and response surface methodology (RSM). The assessed parameters include polymer concentration, voltage, and nozzle-to-collector distance. Response surface methodology based on the Box-Behnken design is utilized to develop a mathematical model as well as to determine the optimum condition for production of nanofiber with minimum diameter. In addition, multilayer perceptron neural networks are designed and trained by the sets of input-output patterns using the Levenberg-Marquardt backpropagation algorithm. The high regression coefficient value (R2 ≥ 0.97) and low root-mean-square error (RMSE ≤3.81) of the two models indicate that both models performed well in predicting PCL fiber diameter, although the RSM model slightly outperformed the ANN model in accuracy. The represented models could assist researchers in fabricating electrospun scaffolds with a defined fiber diameter, thus specializing such scaffolds in particular applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRef Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRef
2.
Zurück zum Zitat Alves da Silva M, Martins A, Costa-Pinto A, Costa P, Faria S, Gomes M, Reis R, Neves N (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11(12):3228–3236CrossRef Alves da Silva M, Martins A, Costa-Pinto A, Costa P, Faria S, Gomes M, Reis R, Neves N (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11(12):3228–3236CrossRef
3.
Zurück zum Zitat Sinha V, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278(1):1–23CrossRef Sinha V, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278(1):1–23CrossRef
4.
Zurück zum Zitat Ng KW, Achuth HN, Moochhala S, Lim TC, Hutmacher DW (2007) In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J Biomater Sci Polym Ed 18(7):925–938CrossRef Ng KW, Achuth HN, Moochhala S, Lim TC, Hutmacher DW (2007) In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J Biomater Sci Polym Ed 18(7):925–938CrossRef
5.
Zurück zum Zitat Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef
6.
Zurück zum Zitat Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282(1):1–18CrossRef Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282(1):1–18CrossRef
7.
Zurück zum Zitat Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1):169–188CrossRef Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1):169–188CrossRef
8.
Zurück zum Zitat Marrazzo C, Di Maio E, Iannace S (2008) Conventional and nanometric nucleating agents in poly (ϵ-caprolactone) foaming: crystals vs. bubbles nucleation. Polym Eng Sci 48(2):336–344CrossRef Marrazzo C, Di Maio E, Iannace S (2008) Conventional and nanometric nucleating agents in poly (ϵ-caprolactone) foaming: crystals vs. bubbles nucleation. Polym Eng Sci 48(2):336–344CrossRef
9.
Zurück zum Zitat Lee K, Kim H, Khil M, Ra Y, Lee D (2003) Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. Polymer 44(4):1287–1294CrossRef Lee K, Kim H, Khil M, Ra Y, Lee D (2003) Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. Polymer 44(4):1287–1294CrossRef
10.
Zurück zum Zitat Hong S, Kim G (2011) Fabrication of size-controlled three-dimensional structures consisting of electrohydrodynamically produced polycaprolactone micro/nanofibers. Applied Physics A 103(4):1009–1014CrossRef Hong S, Kim G (2011) Fabrication of size-controlled three-dimensional structures consisting of electrohydrodynamically produced polycaprolactone micro/nanofibers. Applied Physics A 103(4):1009–1014CrossRef
11.
Zurück zum Zitat Van de Witte P, Dijkstra P, Van den Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1):1–31CrossRef Van de Witte P, Dijkstra P, Van den Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1):1–31CrossRef
12.
Zurück zum Zitat Chakarvarti S, Vetter J (1998) Template synthesis—a membrane based technology for generation of nano−/micro materials: a review. Radiat Meas 29(2):149–159CrossRef Chakarvarti S, Vetter J (1998) Template synthesis—a membrane based technology for generation of nano−/micro materials: a review. Radiat Meas 29(2):149–159CrossRef
13.
Zurück zum Zitat Teo W, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89CrossRef Teo W, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89CrossRef
14.
Zurück zum Zitat Andrady AL (2008) Science and technology of polymer nanofibers. John Wiley & Sons, HobokenCrossRef Andrady AL (2008) Science and technology of polymer nanofibers. John Wiley & Sons, HobokenCrossRef
15.
Zurück zum Zitat Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef
16.
Zurück zum Zitat Agarwal P, Mishra P, Srivastava P (2012) Statistical optimization of the electrospinning process for chitosan/polylactide nanofabrication using response surface methodology. J Mater Sci 47(10):4262–4269CrossRef Agarwal P, Mishra P, Srivastava P (2012) Statistical optimization of the electrospinning process for chitosan/polylactide nanofabrication using response surface methodology. J Mater Sci 47(10):4262–4269CrossRef
17.
Zurück zum Zitat Doustgani A, Vasheghani-Farahani E, Soleimani M, Hashemi-Najafabadi S (2012) Optimizing the mechanical properties of electrospun polycaprolactone and nanohydroxyapatite composite nanofibers. Compos Part B 43(4):1830–1836CrossRef Doustgani A, Vasheghani-Farahani E, Soleimani M, Hashemi-Najafabadi S (2012) Optimizing the mechanical properties of electrospun polycaprolactone and nanohydroxyapatite composite nanofibers. Compos Part B 43(4):1830–1836CrossRef
18.
Zurück zum Zitat Nasouri K, Bahrambeygi H, Rabbi A, Shoushtari AM, Kaflou A (2012) Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J Appl Polym Sci 126(1):127–135CrossRef Nasouri K, Bahrambeygi H, Rabbi A, Shoushtari AM, Kaflou A (2012) Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J Appl Polym Sci 126(1):127–135CrossRef
19.
Zurück zum Zitat Gunoglu K, Demir N, Akkurt I, Demirci ZN (2013) ANN modeling of the bremsstrahlung photon flux in tantalum target. Neural Comput & Applic 23(6):1591–1595CrossRef Gunoglu K, Demir N, Akkurt I, Demirci ZN (2013) ANN modeling of the bremsstrahlung photon flux in tantalum target. Neural Comput & Applic 23(6):1591–1595CrossRef
20.
Zurück zum Zitat El-Shafie A (2014) Neural network nonlinear modeling for hydrogen production using anaerobic fermentation. Neural Comput & Applic 24(3–4):539–547CrossRef El-Shafie A (2014) Neural network nonlinear modeling for hydrogen production using anaerobic fermentation. Neural Comput & Applic 24(3–4):539–547CrossRef
21.
Zurück zum Zitat Sha W, Edwards K (2007) The use of artificial neural networks in materials science based research. Mater Des 28(6):1747–1752CrossRef Sha W, Edwards K (2007) The use of artificial neural networks in materials science based research. Mater Des 28(6):1747–1752CrossRef
22.
Zurück zum Zitat Yördem O, Papila M, Menceloğlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 29(1):34–44CrossRef Yördem O, Papila M, Menceloğlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 29(1):34–44CrossRef
23.
Zurück zum Zitat Gu S, Ren J, Vancso G (2005) Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur Polym J 41(11):2559–2568CrossRef Gu S, Ren J, Vancso G (2005) Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur Polym J 41(11):2559–2568CrossRef
24.
Zurück zum Zitat Khanlou HM, Sadollah A, Ang BC, Kim JH, Talebian S, Ghadimi A (2014) Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput & Applic 25(3–4):767–777CrossRef Khanlou HM, Sadollah A, Ang BC, Kim JH, Talebian S, Ghadimi A (2014) Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput & Applic 25(3–4):767–777CrossRef
25.
Zurück zum Zitat Sadan MK, Ahn H-J, Chauhan G, Reddy N (2016) Quantitative estimation of poly (methyl methacrylate) nano-fiber membrane diameter by artificial neural networks. Eur Polym J 74:91–100CrossRef Sadan MK, Ahn H-J, Chauhan G, Reddy N (2016) Quantitative estimation of poly (methyl methacrylate) nano-fiber membrane diameter by artificial neural networks. Eur Polym J 74:91–100CrossRef
26.
Zurück zum Zitat Sarkar K, Ghalia MB, Wu Z, Bose SC (2009) A neural network model for the numerical prediction of the diameter of electro-spun polyethylene oxide nanofibers. J Mater Process Technol 209(7):3156–3165CrossRef Sarkar K, Ghalia MB, Wu Z, Bose SC (2009) A neural network model for the numerical prediction of the diameter of electro-spun polyethylene oxide nanofibers. J Mater Process Technol 209(7):3156–3165CrossRef
27.
Zurück zum Zitat Rabbi A, Nasouri K, Bahrambeygi H, Shoushtari AM, Babaei MR (2012) RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fibers and Polymers 13(8):1007–1014CrossRef Rabbi A, Nasouri K, Bahrambeygi H, Shoushtari AM, Babaei MR (2012) RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fibers and Polymers 13(8):1007–1014CrossRef
28.
Zurück zum Zitat Sarlak N, Nejad MAF, Shakhesi S, Shabani K (2012) Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: an investigation by Box–Wilson central composite design (CCD). Chem Eng J 210:410–416CrossRef Sarlak N, Nejad MAF, Shakhesi S, Shabani K (2012) Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: an investigation by Box–Wilson central composite design (CCD). Chem Eng J 210:410–416CrossRef
29.
Zurück zum Zitat Sadollah A, Ghadimi A, Metselaar IH, Bahreininejad A (2013) Prediction and optimization of stability parameters for titanium dioxide nanofluid using response surface methodology and artificial neural networks. Sci Eng Compos Mater 20(4):319–330CrossRef Sadollah A, Ghadimi A, Metselaar IH, Bahreininejad A (2013) Prediction and optimization of stability parameters for titanium dioxide nanofluid using response surface methodology and artificial neural networks. Sci Eng Compos Mater 20(4):319–330CrossRef
30.
Zurück zum Zitat Faridi-Majidi R, Ziyadi H, Naderi N, Amani A (2012) Use of artificial neural networks to determine parameters controlling the nanofibers diameter in electrospinning of nylon-6,6. J Appl Polym Sci 124(2):1589–1597CrossRef Faridi-Majidi R, Ziyadi H, Naderi N, Amani A (2012) Use of artificial neural networks to determine parameters controlling the nanofibers diameter in electrospinning of nylon-6,6. J Appl Polym Sci 124(2):1589–1597CrossRef
31.
Zurück zum Zitat Ali AA, Eltabey M, Farouk W, Zoalfakar SH (2014) Electrospun precursor carbon nanofibers optimization by using response surface methodology. J Electrost 72(6):462–469CrossRef Ali AA, Eltabey M, Farouk W, Zoalfakar SH (2014) Electrospun precursor carbon nanofibers optimization by using response surface methodology. J Electrost 72(6):462–469CrossRef
32.
Zurück zum Zitat Gu SY, Ren J (2005) Process optimization and empirical modeling for electrospun poly (D,L-lactide) fibers using response surface methodology. Macromol Mater Eng 290(11):1097–1105CrossRef Gu SY, Ren J (2005) Process optimization and empirical modeling for electrospun poly (D,L-lactide) fibers using response surface methodology. Macromol Mater Eng 290(11):1097–1105CrossRef
33.
Zurück zum Zitat Naghibzadeh M, Adabi M (2014) Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fibers and Polymers 15(4):767–777CrossRef Naghibzadeh M, Adabi M (2014) Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fibers and Polymers 15(4):767–777CrossRef
34.
Zurück zum Zitat Khalili S, Khorasani SN, Saadatkish N, Khoshakhlagh K (2016) Characterization of gelatin/cellulose acetate nanofibrous scaffolds: prediction and optimization by response surface methodology and artificial neural networks. Polymer Science Series A 58(3):399–408CrossRef Khalili S, Khorasani SN, Saadatkish N, Khoshakhlagh K (2016) Characterization of gelatin/cellulose acetate nanofibrous scaffolds: prediction and optimization by response surface methodology and artificial neural networks. Polymer Science Series A 58(3):399–408CrossRef
35.
Zurück zum Zitat Gönen SÖ, Taygun ME, Küçükbayrak S (2015) Effects of electrospinning parameters on gelatin/poly (ϵ-caprolactone) nanofiber diameter. Chemical Engineering & Technology 38(5):844–850CrossRef Gönen SÖ, Taygun ME, Küçükbayrak S (2015) Effects of electrospinning parameters on gelatin/poly (ϵ-caprolactone) nanofiber diameter. Chemical Engineering & Technology 38(5):844–850CrossRef
36.
Zurück zum Zitat Karimi MA, Pourhakkak P, Adabi M, Firoozi S, Adabi M, Naghibzadeh M (2015) Using an artificial neural network for the evaluation of the parameters controlling PVA/chitosan electrospun nanofibers diameter. E-Polymers 15(2):127–138CrossRef Karimi MA, Pourhakkak P, Adabi M, Firoozi S, Adabi M, Naghibzadeh M (2015) Using an artificial neural network for the evaluation of the parameters controlling PVA/chitosan electrospun nanofibers diameter. E-Polymers 15(2):127–138CrossRef
37.
Zurück zum Zitat Ketabchi N, Naghibzadeh M, Adabi M, Esnaashari SS, Faridi-Majidi R (2016) Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Computing and Applications:1–13 Ketabchi N, Naghibzadeh M, Adabi M, Esnaashari SS, Faridi-Majidi R (2016) Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Computing and Applications:1–13
38.
Zurück zum Zitat Hsu CM, Shivkumar S (2004) N, N-Dimethylformamide additions to the solution for the electrospinning of poly (ε-caprolactone) nanofibers. Macromol Mater Eng 289(4):334–340CrossRef Hsu CM, Shivkumar S (2004) N, N-Dimethylformamide additions to the solution for the electrospinning of poly (ε-caprolactone) nanofibers. Macromol Mater Eng 289(4):334–340CrossRef
39.
Zurück zum Zitat Chen M, Patra PK, Warner SB, Bhowmick S (2007) Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng 13(3):579–587CrossRef Chen M, Patra PK, Warner SB, Bhowmick S (2007) Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng 13(3):579–587CrossRef
40.
Zurück zum Zitat Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2(4):455–475MathSciNetCrossRef Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2(4):455–475MathSciNetCrossRef
41.
Zurück zum Zitat Manohar M, Joseph J, Selvaraj T, Sivakumar D (2013) Application of Box Behnken design to optimize the parameters for turning Inconel 718 using coated carbide tools. International Journal of Scientific & Engineering Research 4(4):620–642 Manohar M, Joseph J, Selvaraj T, Sivakumar D (2013) Application of Box Behnken design to optimize the parameters for turning Inconel 718 using coated carbide tools. International Journal of Scientific & Engineering Research 4(4):620–642
42.
Zurück zum Zitat Bölgen N, Menceloğlu YZ, Acatay K, Vargel I, Pişkin E (2005) In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed 16(12):1537–1555CrossRef Bölgen N, Menceloğlu YZ, Acatay K, Vargel I, Pişkin E (2005) In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed 16(12):1537–1555CrossRef
43.
Zurück zum Zitat Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366MATHCrossRef Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366MATHCrossRef
44.
Zurück zum Zitat Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT Press, CambridgeMATH Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT Press, CambridgeMATH
45.
Zurück zum Zitat Wang L, Fu X (2006) Data mining with computational intelligence. Springer Science & Business Media, BerlinMATH Wang L, Fu X (2006) Data mining with computational intelligence. Springer Science & Business Media, BerlinMATH
46.
Zurück zum Zitat Fu X, Wang L (2003) Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 33(3):399–409CrossRef Fu X, Wang L (2003) Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 33(3):399–409CrossRef
Metadaten
Titel
Application of ANN and RSM techniques for modeling electrospinning process of polycaprolactone
verfasst von
Tahere Khatti
Hossein Naderi-Manesh
Seyed Mehdi Kalantar
Publikationsdatum
28.04.2017
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 1/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-2996-6

Weitere Artikel der Ausgabe 1/2019

Neural Computing and Applications 1/2019 Zur Ausgabe

Premium Partner