Skip to main content
Erschienen in: Neural Computing and Applications 1/2019

03.05.2017 | Original Article

On stratified variable thermal conductivity stretched flow of Walter-B material subject to non-Fourier flux theory

verfasst von: T. Hayat, M. Zubair, M. Waqas, A. Alsaedi, M. Ayub

Erschienen in: Neural Computing and Applications | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective here is to examine the characteristics of non-Fourier flux theory in flow induced by a nonlinear stretched surface. Constitutive expression for an incompressible Walter-B liquid is taken into account. Consideration of thermal stratification and variable thermal conductivity characterizes the heat transfer process. The concept of boundary layer is adopted for the formulation purpose. Modern methodology for the computational process is implemented. Surface drag force is computed and discussed. Salient features of significant variables on the physical quantities are reported graphically. It is explored that velocity is enhanced for a larger ratio of rate constants. The increasing values of thermal relaxation factor correspond to less temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ozisik MN (1993) Heat conduction (third ed.). John Wiley & Sons, New York Ozisik MN (1993) Heat conduction (third ed.). John Wiley & Sons, New York
2.
Zurück zum Zitat Garrido PL, Hurtado PI, Nadrowski B (2001) Simple one-dimensional model of heat conduction which obeys Fourier’s law. Phys Rev Lett 86:5486–5489CrossRef Garrido PL, Hurtado PI, Nadrowski B (2001) Simple one-dimensional model of heat conduction which obeys Fourier’s law. Phys Rev Lett 86:5486–5489CrossRef
3.
Zurück zum Zitat Kabir MM (2011) Analytic solutions for generalized forms of the nonlinear heat conduction equation. Nonlinear Anal RWA 12:2681–2691MathSciNetCrossRefMATH Kabir MM (2011) Analytic solutions for generalized forms of the nonlinear heat conduction equation. Nonlinear Anal RWA 12:2681–2691MathSciNetCrossRefMATH
4.
Zurück zum Zitat Guo SL, Wang BL (2015) Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction. Int J Heat Mass Transf 91:235–245CrossRef Guo SL, Wang BL (2015) Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction. Int J Heat Mass Transf 91:235–245CrossRef
5.
Zurück zum Zitat Christov CI, Jordan PM (2005) Heat conduction paradox involving second-sound propagation in moving media. Phys Rev Lett 94:154301CrossRef Christov CI, Jordan PM (2005) Heat conduction paradox involving second-sound propagation in moving media. Phys Rev Lett 94:154301CrossRef
6.
Zurück zum Zitat Qi HT, Guo XW (2014) Transient fractional heat conduction with generalized Cattaneo model. Int J Heat Mass Transf 76:535–539CrossRef Qi HT, Guo XW (2014) Transient fractional heat conduction with generalized Cattaneo model. Int J Heat Mass Transf 76:535–539CrossRef
7.
Zurück zum Zitat Ying XH, Tao QH, Yun JX (2013) Fractional Cattaneo heat equation in a semi-infinite medium. Chin Phys B 22:014401CrossRef Ying XH, Tao QH, Yun JX (2013) Fractional Cattaneo heat equation in a semi-infinite medium. Chin Phys B 22:014401CrossRef
8.
Zurück zum Zitat Zhao X, Sun ZZ (2015) Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J Sci Comput 62:747–771MathSciNetCrossRefMATH Zhao X, Sun ZZ (2015) Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J Sci Comput 62:747–771MathSciNetCrossRefMATH
10.
Zurück zum Zitat Cattaneo C (1948) Sulla conduzione del calore, Atti semin. Mat. Fis. Univ. Modena Reggio Emilia 3:83–101 Cattaneo C (1948) Sulla conduzione del calore, Atti semin. Mat. Fis. Univ. Modena Reggio Emilia 3:83–101
11.
Zurück zum Zitat Liu L, Zheng L, Zhang X (2016) Fractional anomalous diffusion with Cattaneo--Christov flux effects in a comb-like structure. Appl Math Model 40:6663–6675MathSciNetCrossRef Liu L, Zheng L, Zhang X (2016) Fractional anomalous diffusion with Cattaneo--Christov flux effects in a comb-like structure. Appl Math Model 40:6663–6675MathSciNetCrossRef
12.
Zurück zum Zitat Christov CI (2009) On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech Res Commun 36:481–486MathSciNetCrossRefMATH Christov CI (2009) On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech Res Commun 36:481–486MathSciNetCrossRefMATH
13.
Zurück zum Zitat Nadeem S, Muhammad N (2016) Impact of stratification and Cattaneo-Christov heat flux in the flow saturated with porous medium. J Mol Liq 224:423–430CrossRef Nadeem S, Muhammad N (2016) Impact of stratification and Cattaneo-Christov heat flux in the flow saturated with porous medium. J Mol Liq 224:423–430CrossRef
14.
Zurück zum Zitat Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A (2016) Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq 220:642–648CrossRef Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A (2016) Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq 220:642–648CrossRef
15.
Zurück zum Zitat Khan WA, Khan M, Alshomrani AS (2016) Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: applications of non-Fourier’s heat and non-Fick’s mass flux models. J Mol Liq 223:1039–1047CrossRef Khan WA, Khan M, Alshomrani AS (2016) Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: applications of non-Fourier’s heat and non-Fick’s mass flux models. J Mol Liq 223:1039–1047CrossRef
16.
Zurück zum Zitat Hayat T, Zubair M, Ayub M, Waqas M, Alsaedi A (2016) Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux. Eur Phys J Plus 131:355CrossRef Hayat T, Zubair M, Ayub M, Waqas M, Alsaedi A (2016) Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux. Eur Phys J Plus 131:355CrossRef
17.
Zurück zum Zitat Liu L, Zheng L, Liu F, Zhang X (2016) Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov. Comm Non Sci Numer Simul 38:45–58MathSciNetCrossRef Liu L, Zheng L, Liu F, Zhang X (2016) Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov. Comm Non Sci Numer Simul 38:45–58MathSciNetCrossRef
18.
Zurück zum Zitat Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T (2016) Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf 99:702–710CrossRef Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T (2016) Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf 99:702–710CrossRef
19.
Zurück zum Zitat Tanveer A, Hina S, Hayat T, Mustafa M, Ahmad B (2016) Effects of the Cattaneo-Christov heat flux model on peristalsis. Eng Applications Comput Fluid Mech 10:375–385CrossRef Tanveer A, Hina S, Hayat T, Mustafa M, Ahmad B (2016) Effects of the Cattaneo-Christov heat flux model on peristalsis. Eng Applications Comput Fluid Mech 10:375–385CrossRef
20.
Zurück zum Zitat Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) On 2D stratified flow of an Oldroyd-B fluid with chemical reaction: an application of non-Fourier heat flux theory. J Mol Liq 223:566–571CrossRef Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) On 2D stratified flow of an Oldroyd-B fluid with chemical reaction: an application of non-Fourier heat flux theory. J Mol Liq 223:566–571CrossRef
21.
Zurück zum Zitat Sui J, Zheng L, Zhang X (2016) Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. Int J Thermal Sci 104:461–468CrossRef Sui J, Zheng L, Zhang X (2016) Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. Int J Thermal Sci 104:461–468CrossRef
22.
Zurück zum Zitat Khan WA, Khan M, Alshomrani AS, Ahmad L (2016) Numerical investigation of generalized Fourier’s and Fick’s laws for Sisko fluid flow. J Mol Liq 224:1016–1021CrossRef Khan WA, Khan M, Alshomrani AS, Ahmad L (2016) Numerical investigation of generalized Fourier’s and Fick’s laws for Sisko fluid flow. J Mol Liq 224:1016–1021CrossRef
23.
Zurück zum Zitat Ali ME, Sandeep N (2017) Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study. Results Phys 7:21–30CrossRef Ali ME, Sandeep N (2017) Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study. Results Phys 7:21–30CrossRef
24.
25.
26.
Zurück zum Zitat Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647CrossRef Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647CrossRef
27.
Zurück zum Zitat Shufrin I, Eisenberger M (2005) Stability of variable thickness shear deformable plates-first order and high order analyses. Thin-Walled Struct 43:189–207CrossRefMATH Shufrin I, Eisenberger M (2005) Stability of variable thickness shear deformable plates-first order and high order analyses. Thin-Walled Struct 43:189–207CrossRefMATH
28.
Zurück zum Zitat Subhashini SV, Sumathi R, Pop I (2013) Dual solutions in a thermal diffusive flow over a stretching sheet with variable thickness. Int Commun Heat Mass Transfer 48:61–66CrossRef Subhashini SV, Sumathi R, Pop I (2013) Dual solutions in a thermal diffusive flow over a stretching sheet with variable thickness. Int Commun Heat Mass Transfer 48:61–66CrossRef
29.
Zurück zum Zitat Hayat T, Hussain Z, Muhammad T, Alsaedi A (2016) Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq 221:1121–1127CrossRef Hayat T, Hussain Z, Muhammad T, Alsaedi A (2016) Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq 221:1121–1127CrossRef
30.
Zurück zum Zitat Hayat T, Bashir G, Waqas M, Alsaedi A (2016) MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J Mol Liq 223:836–844CrossRef Hayat T, Bashir G, Waqas M, Alsaedi A (2016) MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J Mol Liq 223:836–844CrossRef
31.
Zurück zum Zitat Hayat T, Khan MI, Waqas M, Alsaedi A (2017) Mathematical modeling of non-Newtonian fluid with chemical aspects: a new formulation and results by numerical technique. Colloids Surfaces A: Physicochemical Eng Aspects DOI. doi:10.1016/j.colsurfa.2017.01.007 Hayat T, Khan MI, Waqas M, Alsaedi A (2017) Mathematical modeling of non-Newtonian fluid with chemical aspects: a new formulation and results by numerical technique. Colloids Surfaces A: Physicochemical Eng Aspects DOI. doi:10.​1016/​j.​colsurfa.​2017.​01.​007
32.
Zurück zum Zitat Hayat T, Zubair M, Ayub M, Waqas M, Alsaedi A (2017) On doubly stratified chemically reactive flow of Powell-Eyring liquid subject to non-Fourier heat flux theory. Results Phys 7:99–106CrossRef Hayat T, Zubair M, Ayub M, Waqas M, Alsaedi A (2017) On doubly stratified chemically reactive flow of Powell-Eyring liquid subject to non-Fourier heat flux theory. Results Phys 7:99–106CrossRef
33.
Zurück zum Zitat Opanasenko AN, Sorokin AP, Zaryugin DG, Rachkov MV (2012) Coolant stratification in nuclear power facilities. Atomic Energy 111:172–178CrossRef Opanasenko AN, Sorokin AP, Zaryugin DG, Rachkov MV (2012) Coolant stratification in nuclear power facilities. Atomic Energy 111:172–178CrossRef
34.
Zurück zum Zitat Parthasarathy U, Sundararajan T, Balaji C, Velusamy K, Chellapandi P, Chetal SC (2012) Decay heat removal in pool type fast reactor using passive systems. Nuc Eng Des 250:480–499CrossRef Parthasarathy U, Sundararajan T, Balaji C, Velusamy K, Chellapandi P, Chetal SC (2012) Decay heat removal in pool type fast reactor using passive systems. Nuc Eng Des 250:480–499CrossRef
35.
Zurück zum Zitat Lu T, Han WW, Zhai H (2015) Numerical simulation of temperature fluctuation reduction by a vortex breaker in an elbow pipe with thermal stratification. Annals Nuc Energy 75:462–467CrossRef Lu T, Han WW, Zhai H (2015) Numerical simulation of temperature fluctuation reduction by a vortex breaker in an elbow pipe with thermal stratification. Annals Nuc Energy 75:462–467CrossRef
36.
Zurück zum Zitat Kumar S, Vijayan PK, Kannan U, Sharma M, Pilkhwal DS (2017) Experimental and computational simulation of thermal stratification in large pools with immersed condenser. Appl Thermal Eng 113:345–361CrossRef Kumar S, Vijayan PK, Kannan U, Sharma M, Pilkhwal DS (2017) Experimental and computational simulation of thermal stratification in large pools with immersed condenser. Appl Thermal Eng 113:345–361CrossRef
37.
Zurück zum Zitat Hayat T, Khan MI, Farooq M, Alsaedi A, Khan MI (2017) Thermally stratified stretching flow with Cattaneo-Christov heat flux. Int J Heat Mass Transf 106:289–294CrossRef Hayat T, Khan MI, Farooq M, Alsaedi A, Khan MI (2017) Thermally stratified stretching flow with Cattaneo-Christov heat flux. Int J Heat Mass Transf 106:289–294CrossRef
38.
Zurück zum Zitat Chiam CT (1966) Heat transfer with variable conductivity in stagnation-point flow towards a stretching sheet. Int Commun Heat Mass Transfer 23:239–248CrossRef Chiam CT (1966) Heat transfer with variable conductivity in stagnation-point flow towards a stretching sheet. Int Commun Heat Mass Transfer 23:239–248CrossRef
39.
Zurück zum Zitat Akbar NS, Raza M, Ellahi R (2016) Endoscopic effects with entropy generation analysis in peristalsis for the thermal conductivity of H2O+Cu nanofluid. J Appl Fluid Mech 9:1721–1730CrossRef Akbar NS, Raza M, Ellahi R (2016) Endoscopic effects with entropy generation analysis in peristalsis for the thermal conductivity of H2O+Cu nanofluid. J Appl Fluid Mech 9:1721–1730CrossRef
40.
Zurück zum Zitat Akbar NS, Raza M, Ellahi R (2015) Peristaltic flow with thermal conductivity of H2O+Cu nanofluid and entropy generation. Results Phys 5:115–124CrossRef Akbar NS, Raza M, Ellahi R (2015) Peristaltic flow with thermal conductivity of H2O+Cu nanofluid and entropy generation. Results Phys 5:115–124CrossRef
41.
Zurück zum Zitat Akbar NS, Raza M, Ellahi R (2016) Anti-bacterial applications for new thermal conductivity model in arteries with CNT suspended nanofluid. Int J Mech Medicine Biology 16:1650063CrossRef Akbar NS, Raza M, Ellahi R (2016) Anti-bacterial applications for new thermal conductivity model in arteries with CNT suspended nanofluid. Int J Mech Medicine Biology 16:1650063CrossRef
42.
Zurück zum Zitat Hayat T, Khan MI, Waqas M, Yasmeen T, Alsaedi A (2016) Viscous dissipation effect in flow of magnetonanofluid with variable properties. J Mol Liq 222:47–54CrossRef Hayat T, Khan MI, Waqas M, Yasmeen T, Alsaedi A (2016) Viscous dissipation effect in flow of magnetonanofluid with variable properties. J Mol Liq 222:47–54CrossRef
43.
Zurück zum Zitat Liao SJ (2012) Homotopic analysis method in nonlinear differential equations. Springer, HeidelbergCrossRef Liao SJ (2012) Homotopic analysis method in nonlinear differential equations. Springer, HeidelbergCrossRef
44.
Zurück zum Zitat Ellahi R, Hassan M, Zeeshan A (2016) Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia-Pacific J Chemical Eng 11:179–186CrossRef Ellahi R, Hassan M, Zeeshan A (2016) Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia-Pacific J Chemical Eng 11:179–186CrossRef
45.
Zurück zum Zitat Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. J Mol Liq 215:704–710CrossRef Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. J Mol Liq 215:704–710CrossRef
46.
Zurück zum Zitat Turkyilmazoglu M (2016) An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat 30:1633–1650MathSciNetCrossRefMATH Turkyilmazoglu M (2016) An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat 30:1633–1650MathSciNetCrossRefMATH
47.
Zurück zum Zitat Hayat T, Waqas M, Khan MI, Alsaedi A (2016) Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int J Heat Mass Transf 102:1123–1129CrossRef Hayat T, Waqas M, Khan MI, Alsaedi A (2016) Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int J Heat Mass Transf 102:1123–1129CrossRef
48.
Zurück zum Zitat Shehzad SA, Hayat T, Alsaedi A, Chen B (2016) A useful model for solar radiation. Energy, Ecology Environment 1:30–38CrossRef Shehzad SA, Hayat T, Alsaedi A, Chen B (2016) A useful model for solar radiation. Energy, Ecology Environment 1:30–38CrossRef
49.
Zurück zum Zitat Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772CrossRef Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772CrossRef
50.
Zurück zum Zitat Hayat T, Qayyum S, Waqas M, Alsaedi A (2016) Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. J Mol Liq 224:801–810CrossRef Hayat T, Qayyum S, Waqas M, Alsaedi A (2016) Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. J Mol Liq 224:801–810CrossRef
51.
Zurück zum Zitat Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 38:517–521CrossRef Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 38:517–521CrossRef
Metadaten
Titel
On stratified variable thermal conductivity stretched flow of Walter-B material subject to non-Fourier flux theory
verfasst von
T. Hayat
M. Zubair
M. Waqas
A. Alsaedi
M. Ayub
Publikationsdatum
03.05.2017
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 1/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3013-9

Weitere Artikel der Ausgabe 1/2019

Neural Computing and Applications 1/2019 Zur Ausgabe