Skip to main content
Erschienen in: Neural Computing and Applications 12/2020

13.06.2019 | Original Article

Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses

verfasst von: Kanak Kalita, Tanmoy Mukhopadhyay, Partha Dey, Salil Haldar

Erschienen in: Neural Computing and Applications | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-fidelity multi-scale design optimization of many real-life applications in structural engineering still remains largely intractable due to the computationally intensive nature of numerical solvers like finite element method. Thus, in this paper, an alternate route of metamodel-based design optimization methodology is proposed in multi-scale framework based on a symbolic regression implemented using genetic programming (GP) coupled with d-optimal design. This approach drastically cuts the computational costs by replacing the finite element module with appropriately constructed robust and efficient metamodels. Resulting models are compact, have good interpretability and assume a free-form expression capable of capturing the non-linearly, complexity and vastness of the design space. Two robust nature-inspired optimization algorithms, viz. multi-objective genetic algorithm and multi-objective particle swarm optimization, are used to generate Pareto optimal solutions for several test problems with varying complexity. TOPSIS, a multi-criteria decision-making approach, is then applied to choose the best alternative among the Pareto optimal sets. Finally, the applicability of GP in efficiently tackling multi-scale optimization problems of composites is investigated, where a real-life scenario is explored by varying fractions of pertinent engineering materials to bring about property changes in the final composite structure across two different scales. The study reveals that a microscale optimization leads to better optimized solutions, demonstrating the advantage of carrying out a multi-scale optimization without any additional computational burden.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Koide RM, Ferreira AP, Luersen MA (2015) Laminated composites buckling analysis using lamination parameters, neural networks and support vector regression. Lat Am J Solids Struct 12(2):271–294CrossRef Koide RM, Ferreira AP, Luersen MA (2015) Laminated composites buckling analysis using lamination parameters, neural networks and support vector regression. Lat Am J Solids Struct 12(2):271–294CrossRef
2.
Zurück zum Zitat Reddy MRS, Reddy BS, Reddy VN, Sreenivasulu S (2012) Prediction of natural frequency of laminated composite plates using artificial neural networks. Engineering 4(06):329CrossRef Reddy MRS, Reddy BS, Reddy VN, Sreenivasulu S (2012) Prediction of natural frequency of laminated composite plates using artificial neural networks. Engineering 4(06):329CrossRef
3.
Zurück zum Zitat García-Macías E, Castro-Triguero R, Friswell MI, Adhikari S, Sáez A (2016) Metamodel-based approach for stochastic free vibration analysis of functionally graded carbon nanotube reinforced plates. Compos Struct 152:183–198CrossRef García-Macías E, Castro-Triguero R, Friswell MI, Adhikari S, Sáez A (2016) Metamodel-based approach for stochastic free vibration analysis of functionally graded carbon nanotube reinforced plates. Compos Struct 152:183–198CrossRef
4.
Zurück zum Zitat Mukhopadhyay T, Naskar S, Dey S, Adhikari S (2016) On quantifying the effect of noise in surrogate based stochastic free vibration analysis of laminated composite shallow shells. Compos Struct 140:798–805CrossRef Mukhopadhyay T, Naskar S, Dey S, Adhikari S (2016) On quantifying the effect of noise in surrogate based stochastic free vibration analysis of laminated composite shallow shells. Compos Struct 140:798–805CrossRef
5.
Zurück zum Zitat Mukhopadhyay T, Mahata A, Dey S, Adhikari S (2016) Probabilistic analysis and design of HCP nanowires: an efficient surrogate based molecular dynamics simulation approach. J Mater Sci Technol 32(12):1345–1351CrossRef Mukhopadhyay T, Mahata A, Dey S, Adhikari S (2016) Probabilistic analysis and design of HCP nanowires: an efficient surrogate based molecular dynamics simulation approach. J Mater Sci Technol 32(12):1345–1351CrossRef
6.
Zurück zum Zitat Mahata A, Mukhopadhyay T, Adhikari S (2016) A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper. Mater Res Express 3:036501CrossRef Mahata A, Mukhopadhyay T, Adhikari S (2016) A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper. Mater Res Express 3:036501CrossRef
7.
Zurück zum Zitat Dey S, Mukhopadhyay T, Spickenheuer A, Gohs U, Adhikari S (2016) Uncertainty quantification in natural frequency of composite plates - An Artificial neural network based approach. Adv Compos Lett 25(2):43–48CrossRef Dey S, Mukhopadhyay T, Spickenheuer A, Gohs U, Adhikari S (2016) Uncertainty quantification in natural frequency of composite plates - An Artificial neural network based approach. Adv Compos Lett 25(2):43–48CrossRef
8.
Zurück zum Zitat Dey S, Mukhopadhyay T, Sahu SK, Adhikari S (2016) Effect of cutout on stochastic natural frequency of composite curved panels. Compos Part B Eng 105:188–202CrossRef Dey S, Mukhopadhyay T, Sahu SK, Adhikari S (2016) Effect of cutout on stochastic natural frequency of composite curved panels. Compos Part B Eng 105:188–202CrossRef
9.
Zurück zum Zitat Ju S, Shenoi RA, Jiang D, Sobey AJ (2013) Multi-parameter optimization of lightweight composite triangular truss structure based on response surface methodology. Compos Struct 97:107–116CrossRef Ju S, Shenoi RA, Jiang D, Sobey AJ (2013) Multi-parameter optimization of lightweight composite triangular truss structure based on response surface methodology. Compos Struct 97:107–116CrossRef
10.
Zurück zum Zitat Heinonen O, Pajunen S (2011) Optimal design of stiffened plate using metamodeling techniques. J Struct Mech 44(3):218–230 Heinonen O, Pajunen S (2011) Optimal design of stiffened plate using metamodeling techniques. J Struct Mech 44(3):218–230
11.
Zurück zum Zitat Dutra TA, de Almeida SFM (2015) Composite plate stiffness multicriteria optimization using lamination parameters. Compos Struct 133:166–177CrossRef Dutra TA, de Almeida SFM (2015) Composite plate stiffness multicriteria optimization using lamination parameters. Compos Struct 133:166–177CrossRef
12.
Zurück zum Zitat Passos AG, Luersen MA (2018) Multiobjective optimization of laminated composite parts with curvilinear fibers using Kriging-based approaches. Struct Multidiscip Optim 57(3):1115–1127CrossRef Passos AG, Luersen MA (2018) Multiobjective optimization of laminated composite parts with curvilinear fibers using Kriging-based approaches. Struct Multidiscip Optim 57(3):1115–1127CrossRef
13.
Zurück zum Zitat Ganguli R (2002) Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods. J Sound Vib 258(2):327–344CrossRef Ganguli R (2002) Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods. J Sound Vib 258(2):327–344CrossRef
14.
Zurück zum Zitat Dey S, Mukhopadhyay T, Khodaparast HH, Adhikari S (2016) A response surface modelling approach for resonance driven reliability-based optimization of composite shells. Period Polytech Civ Eng 60(1):103CrossRef Dey S, Mukhopadhyay T, Khodaparast HH, Adhikari S (2016) A response surface modelling approach for resonance driven reliability-based optimization of composite shells. Period Polytech Civ Eng 60(1):103CrossRef
15.
Zurück zum Zitat Jafari R, Yousefi P, Hosseini-Hashemi S (2013) Vibration optimization of skew composite plates using the Rayleigh–Ritz and response surface methods. In: International conference on smart technologies for mechanical engineering Jafari R, Yousefi P, Hosseini-Hashemi S (2013) Vibration optimization of skew composite plates using the Rayleigh–Ritz and response surface methods. In: International conference on smart technologies for mechanical engineering
16.
Zurück zum Zitat Todoroki A, Suenaga K, Shimamura Y (2003) Stacking sequence optimizations using modified global response surface in lamination parameters. Adv Compos Mater 12(1):35–55CrossRef Todoroki A, Suenaga K, Shimamura Y (2003) Stacking sequence optimizations using modified global response surface in lamination parameters. Adv Compos Mater 12(1):35–55CrossRef
17.
Zurück zum Zitat Todoroki A, Sasai M (2002) Stacking sequence optimizations using GA with zoomed response surface on lamination parameters. Adv Compos Mater 11(3):299–318CrossRef Todoroki A, Sasai M (2002) Stacking sequence optimizations using GA with zoomed response surface on lamination parameters. Adv Compos Mater 11(3):299–318CrossRef
18.
Zurück zum Zitat Todoroki A, Ozawa T, Mizutani Y, Suzuki Y (2013) Thermal deformation constraint using response surfaces for optimization of stacking sequences of composite laminates. Adv Compos Mater 22(4):265–279CrossRef Todoroki A, Ozawa T, Mizutani Y, Suzuki Y (2013) Thermal deformation constraint using response surfaces for optimization of stacking sequences of composite laminates. Adv Compos Mater 22(4):265–279CrossRef
19.
Zurück zum Zitat Todoroki A, Ishikawa T (2004) Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Compos Struct 64(3–4):349–357CrossRef Todoroki A, Ishikawa T (2004) Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Compos Struct 64(3–4):349–357CrossRef
20.
Zurück zum Zitat Karsh PK, Mukhopadhyay T, Dey S (2018) Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination. Compos Struct 184:554–567CrossRef Karsh PK, Mukhopadhyay T, Dey S (2018) Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination. Compos Struct 184:554–567CrossRef
21.
Zurück zum Zitat Mukhopadhyay T, Naskar S, Dey S, Chakrabarti A (2019) Condition assessment and strengthening of aged structures: perspectives based on a critical case study. Pract Period Struct Design Constr 24(3):5019003CrossRef Mukhopadhyay T, Naskar S, Dey S, Chakrabarti A (2019) Condition assessment and strengthening of aged structures: perspectives based on a critical case study. Pract Period Struct Design Constr 24(3):5019003CrossRef
22.
Zurück zum Zitat Mukhopadhyay T, Naskar S, Karsh PK, Dey S, You Z (2018) Effect of delamination on the stochastic natural frequencies of composite laminates. Compos Part B Eng 154:242–256CrossRef Mukhopadhyay T, Naskar S, Karsh PK, Dey S, You Z (2018) Effect of delamination on the stochastic natural frequencies of composite laminates. Compos Part B Eng 154:242–256CrossRef
23.
Zurück zum Zitat Sliseris J, Rocens K (2013) Optimal design of composite plates with discrete variable stiffness. Compos Struct 98:15–23CrossRef Sliseris J, Rocens K (2013) Optimal design of composite plates with discrete variable stiffness. Compos Struct 98:15–23CrossRef
24.
Zurück zum Zitat Cardozo SD, Gomes H, Awruch A et al (2011) Optimization of laminated composite plates and shells using genetic algorithms, neural networks and finite elements. Lat Am J Solids Struct 8(4):413–427CrossRef Cardozo SD, Gomes H, Awruch A et al (2011) Optimization of laminated composite plates and shells using genetic algorithms, neural networks and finite elements. Lat Am J Solids Struct 8(4):413–427CrossRef
25.
Zurück zum Zitat Marín L, Trias D, Badalló P, Rus G, Mayugo JA (2012) Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms. Compos Struct 94(11):3321–3326CrossRef Marín L, Trias D, Badalló P, Rus G, Mayugo JA (2012) Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms. Compos Struct 94(11):3321–3326CrossRef
26.
Zurück zum Zitat Bacarreza O, Aliabadi MH, Apicella A (2015) Robust design and optimization of composite stiffened panels in post-buckling. Struct Multidiscip Optim 51(2):409–422CrossRef Bacarreza O, Aliabadi MH, Apicella A (2015) Robust design and optimization of composite stiffened panels in post-buckling. Struct Multidiscip Optim 51(2):409–422CrossRef
27.
Zurück zum Zitat Nik MA, Fayazbakhsh K, Pasini D, Lessard L (2012) Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers. Compos Struct 94(8):2306–2313CrossRef Nik MA, Fayazbakhsh K, Pasini D, Lessard L (2012) Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers. Compos Struct 94(8):2306–2313CrossRef
28.
Zurück zum Zitat Koza JR (1992) Genetic programming. MIT Press, CambridgeMATH Koza JR (1992) Genetic programming. MIT Press, CambridgeMATH
30.
Zurück zum Zitat Murata T, Ishibuchi H (1995) MOGA: multi-objective genetic algorithms. In: IEEE international conference on evolutionary computation Murata T, Ishibuchi H (1995) MOGA: multi-objective genetic algorithms. In: IEEE international conference on evolutionary computation
31.
Zurück zum Zitat Mostaghim S, Teich J (2003) Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the swarm intelligence symposium, 2003. SIS’03. IEEE Mostaghim S, Teich J (2003) Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the swarm intelligence symposium, 2003. SIS’03. IEEE
32.
Zurück zum Zitat Singh AP, Mani V, Ganguli R (2007) Genetic programming metamodel for rotating beams. Comput Model Eng Sci 21(2):133MATH Singh AP, Mani V, Ganguli R (2007) Genetic programming metamodel for rotating beams. Comput Model Eng Sci 21(2):133MATH
33.
Zurück zum Zitat Jalal M, Ramezanianpour AA, Pouladkhan AR, Tedro P (2013) Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders. Neural Comput Appl 23(2):455–470CrossRef Jalal M, Ramezanianpour AA, Pouladkhan AR, Tedro P (2013) Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders. Neural Comput Appl 23(2):455–470CrossRef
34.
Zurück zum Zitat Jones RM (1998) Mechanics of composite materials, 2nd edn. Taylor & Francis Ltd, London Jones RM (1998) Mechanics of composite materials, 2nd edn. Taylor & Francis Ltd, London
35.
Zurück zum Zitat Dey S, Mukhopadhyay T, Adhikari S (2017) Metamodel based high-fidelity stochastic analysis of composite laminates: a concise review with critical comparative assessment. Compos Struct 171:227–250CrossRef Dey S, Mukhopadhyay T, Adhikari S (2017) Metamodel based high-fidelity stochastic analysis of composite laminates: a concise review with critical comparative assessment. Compos Struct 171:227–250CrossRef
36.
Zurück zum Zitat Chakraborty S, Mandal B, Chowdhury R, Chakrabarti A (2016) Stochastic free vibration analysis of laminated composite plates using polynomial correlated function expansion. Compos Struct 135:236–249CrossRef Chakraborty S, Mandal B, Chowdhury R, Chakrabarti A (2016) Stochastic free vibration analysis of laminated composite plates using polynomial correlated function expansion. Compos Struct 135:236–249CrossRef
37.
Zurück zum Zitat Mukhopadhyay T, Dey TK, Chowdhury R, Chakrabarti A, Adhikari S (2015) Optimum design of FRP bridge deck: an efficient RS-HDMR based approach. Struct Multidiscip Optim 52(3):459–477CrossRef Mukhopadhyay T, Dey TK, Chowdhury R, Chakrabarti A, Adhikari S (2015) Optimum design of FRP bridge deck: an efficient RS-HDMR based approach. Struct Multidiscip Optim 52(3):459–477CrossRef
38.
Zurück zum Zitat Vladislavleva EY (2008) Model-based problem solving through symbolic regression via pareto genetic programming. CentER, Tilburg University, Tilburg Vladislavleva EY (2008) Model-based problem solving through symbolic regression via pareto genetic programming. CentER, Tilburg University, Tilburg
39.
Zurück zum Zitat Sharifipour M, Bonakdari H, Zaji AH (2018) Comparison of genetic programming and radial basis function neural network for open-channel junction velocity field prediction. Neural Comput Appl 30(3):855–864CrossRef Sharifipour M, Bonakdari H, Zaji AH (2018) Comparison of genetic programming and radial basis function neural network for open-channel junction velocity field prediction. Neural Comput Appl 30(3):855–864CrossRef
40.
Zurück zum Zitat Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2):87–112CrossRef Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2):87–112CrossRef
41.
Zurück zum Zitat Barricelli NA et al (1954) Esempi numerici di processi di evoluzione. Methodos 6(21–22):45–68MathSciNet Barricelli NA et al (1954) Esempi numerici di processi di evoluzione. Methodos 6(21–22):45–68MathSciNet
43.
Zurück zum Zitat Mukhopadhyay T, Dey T, Chowdhury R, Chakrabarti A (2015) Structural damage identification using response surface-based multi-objective optimization: a comparative study. Arab J Sci Eng 40(4):1027–1044MathSciNetMATHCrossRef Mukhopadhyay T, Dey T, Chowdhury R, Chakrabarti A (2015) Structural damage identification using response surface-based multi-objective optimization: a comparative study. Arab J Sci Eng 40(4):1027–1044MathSciNetMATHCrossRef
44.
Zurück zum Zitat Shi LM, Fang H, Tong W, Wu J, Perkins R, Blair RM, Branham WS, Dial SL, Moland CL, Sheehan DM (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci 41(1):186–195CrossRef Shi LM, Fang H, Tong W, Wu J, Perkins R, Blair RM, Branham WS, Dial SL, Moland CL, Sheehan DM (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci 41(1):186–195CrossRef
45.
Zurück zum Zitat Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44(1):1–12CrossRef Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44(1):1–12CrossRef
46.
Zurück zum Zitat Consonni V, Ballabio D, Todeschini R (2010) Evaluation of model predictive ability by external validation techniques. J Chemom 24:194–201CrossRef Consonni V, Ballabio D, Todeschini R (2010) Evaluation of model predictive ability by external validation techniques. J Chemom 24:194–201CrossRef
47.
Zurück zum Zitat Goldberg DE (2006) Genetic algorithms. Pearson Education, Bengaluru Goldberg DE (2006) Genetic algorithms. Pearson Education, Bengaluru
48.
Zurück zum Zitat Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, 1995. MHS’95 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, 1995. MHS’95
49.
Zurück zum Zitat Diyaley S, Shilal P, Shivakoti I, Ghadai RK, Kalita K (2017) PSI and TOPSIS based selection of process parameters in WEDM. Period Polytech Eng Mech Eng 61(4):55 Diyaley S, Shilal P, Shivakoti I, Ghadai RK, Kalita K (2017) PSI and TOPSIS based selection of process parameters in WEDM. Period Polytech Eng Mech Eng 61(4):55
50.
Zurück zum Zitat Raju B, Hiremath SR, Mahapatra DR (2018) A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos Struct 204:607–619CrossRef Raju B, Hiremath SR, Mahapatra DR (2018) A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos Struct 204:607–619CrossRef
51.
Zurück zum Zitat Naskar S, Mukhopadhyay T, Sriramula S (2018) Probabilistic micromechanical spatial variability quantification in laminated composites. Compos B Eng 151:291–325CrossRef Naskar S, Mukhopadhyay T, Sriramula S (2018) Probabilistic micromechanical spatial variability quantification in laminated composites. Compos B Eng 151:291–325CrossRef
52.
Zurück zum Zitat Naskar S, Mukhopadhyay T, Sriramula S (2019) Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites. Compos Struct 209:940–967CrossRef Naskar S, Mukhopadhyay T, Sriramula S (2019) Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites. Compos Struct 209:940–967CrossRef
53.
Zurück zum Zitat Naskar S, Mukhopadhyay T, Sriramula S, Adhikari S (2017) Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties. Compos Struct 160:312–334CrossRef Naskar S, Mukhopadhyay T, Sriramula S, Adhikari S (2017) Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties. Compos Struct 160:312–334CrossRef
54.
Zurück zum Zitat Dey S, Mukhopadhyay T, Sahu SK, Adhikari S (2018) Stochastic dynamic stability analysis of composite curved panels subjected to non-uniform partial edge loading. Eur J Mech A Solids 67:108–122MathSciNetMATHCrossRef Dey S, Mukhopadhyay T, Sahu SK, Adhikari S (2018) Stochastic dynamic stability analysis of composite curved panels subjected to non-uniform partial edge loading. Eur J Mech A Solids 67:108–122MathSciNetMATHCrossRef
55.
Zurück zum Zitat Kumar RR, Mukhopadhyay T, Pandey KM, Dey S (2019) Stochastic buckling analysis of sandwich plates: the importance of higher order modes. Int J Mech Sci 152:630–643CrossRef Kumar RR, Mukhopadhyay T, Pandey KM, Dey S (2019) Stochastic buckling analysis of sandwich plates: the importance of higher order modes. Int J Mech Sci 152:630–643CrossRef
56.
Zurück zum Zitat Dey S, Mukhopadhyay T, Adhikari S (2018) Uncertainty quantification in laminated composites: a meta-model based approach. CRC Press, Boca Raton ISBN 9781315155593 MATHCrossRef Dey S, Mukhopadhyay T, Adhikari S (2018) Uncertainty quantification in laminated composites: a meta-model based approach. CRC Press, Boca Raton ISBN 9781315155593 MATHCrossRef
57.
Zurück zum Zitat Karsh PK, Mukhopadhyay T, Dey S (2019) Stochastic low-velocity impact on functionally graded plates: probabilistic and non-probabilistic uncertainty quantification. Compos B Eng 159:461–480CrossRef Karsh PK, Mukhopadhyay T, Dey S (2019) Stochastic low-velocity impact on functionally graded plates: probabilistic and non-probabilistic uncertainty quantification. Compos B Eng 159:461–480CrossRef
58.
Zurück zum Zitat Dey S, Mukhopadhyay T, Naskar S, Dey TK, Chalak HD, Adhikari S (2019) Probabilistic characterization for dynamics and stability of laminated soft core sandwich plates. J Sandw Struct Mater 21(1):366–397CrossRef Dey S, Mukhopadhyay T, Naskar S, Dey TK, Chalak HD, Adhikari S (2019) Probabilistic characterization for dynamics and stability of laminated soft core sandwich plates. J Sandw Struct Mater 21(1):366–397CrossRef
59.
Zurück zum Zitat Karsh PK, Mukhopadhyay T, Dey S (2018) Stochastic dynamic analysis of twisted functionally graded plates. Compos B Eng 147:259–278CrossRef Karsh PK, Mukhopadhyay T, Dey S (2018) Stochastic dynamic analysis of twisted functionally graded plates. Compos B Eng 147:259–278CrossRef
60.
Zurück zum Zitat Maharshi K, Mukhopadhyay T, Roy B, Roy L, Dey S (2018) Stochastic dynamic behaviour of hydrodynamic journal bearings including the effect of surface roughness. Int J Mech Sci 142–143:370–383CrossRef Maharshi K, Mukhopadhyay T, Roy B, Roy L, Dey S (2018) Stochastic dynamic behaviour of hydrodynamic journal bearings including the effect of surface roughness. Int J Mech Sci 142–143:370–383CrossRef
61.
Zurück zum Zitat Mukhopadhyay T (2018) A multivariate adaptive regression splines based damage identification methodology for web core composite bridges including the effect of noise. J Sandw Struct Mater 20(7):885–903CrossRef Mukhopadhyay T (2018) A multivariate adaptive regression splines based damage identification methodology for web core composite bridges including the effect of noise. J Sandw Struct Mater 20(7):885–903CrossRef
62.
Zurück zum Zitat Dey TK, Mukhopadhyay T, Chakrabarti A, Sharma UK (2015) Efficient lightweight design of FRP bridge deck. Proc Inst Civ Eng Struct Build 168(10):697–707CrossRef Dey TK, Mukhopadhyay T, Chakrabarti A, Sharma UK (2015) Efficient lightweight design of FRP bridge deck. Proc Inst Civ Eng Struct Build 168(10):697–707CrossRef
63.
Zurück zum Zitat Mukhopadhyay T, Chowdhury R, Chakrabarti A (2016) Structural damage identification: a random sampling-high dimensional model representation approach. Adv Struct Eng 19(6):908–927CrossRef Mukhopadhyay T, Chowdhury R, Chakrabarti A (2016) Structural damage identification: a random sampling-high dimensional model representation approach. Adv Struct Eng 19(6):908–927CrossRef
64.
Zurück zum Zitat Mukhopadhyay T, Dey TK, Dey S, Chakrabarti A (2015) Optimization of fiber reinforced polymer web core bridge deck—a hybrid approach. Struct Eng Int 25(2):173–183CrossRef Mukhopadhyay T, Dey TK, Dey S, Chakrabarti A (2015) Optimization of fiber reinforced polymer web core bridge deck—a hybrid approach. Struct Eng Int 25(2):173–183CrossRef
65.
Zurück zum Zitat Kalita K, Haldar S (2017) Eigenfrequencies of simply supported taper plates with cut-outs. Struct Eng Mech 63(1):103–113 Kalita K, Haldar S (2017) Eigenfrequencies of simply supported taper plates with cut-outs. Struct Eng Mech 63(1):103–113
66.
Zurück zum Zitat Kalita K, Ramachandran M, Raichurkar P, Mokal SD, Haldar S (2016) Free vibration analysis of laminated composites by a nine node isoparametric plate bending element. Adv Compos Lett 25(5):108CrossRef Kalita K, Ramachandran M, Raichurkar P, Mokal SD, Haldar S (2016) Free vibration analysis of laminated composites by a nine node isoparametric plate bending element. Adv Compos Lett 25(5):108CrossRef
67.
Zurück zum Zitat Sayyad AS, Ghugal YM (2015) On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Compos Struct 129:177–201CrossRef Sayyad AS, Ghugal YM (2015) On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Compos Struct 129:177–201CrossRef
68.
Zurück zum Zitat Xiang S, Wang K-M, Ai Y-T, Sha Y-D, Shi H (2009) Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory. Thin Walled Struct 47:1265–1271CrossRef Xiang S, Wang K-M, Ai Y-T, Sha Y-D, Shi H (2009) Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory. Thin Walled Struct 47:1265–1271CrossRef
69.
Zurück zum Zitat Aydogdu M (2009) A new shear deformation theory for laminated composite plates. Compos Struct 89:94–101CrossRef Aydogdu M (2009) A new shear deformation theory for laminated composite plates. Compos Struct 89:94–101CrossRef
70.
Zurück zum Zitat Zhen W, Wanji C (2006) Free vibration of laminated composite and sandwich plates using global–local higher-order theory. J Sound Vib 298:333–349CrossRef Zhen W, Wanji C (2006) Free vibration of laminated composite and sandwich plates using global–local higher-order theory. J Sound Vib 298:333–349CrossRef
71.
Zurück zum Zitat Akhras G, Li W (2005) Static and free vibration analysis of composite plates using spline finite strips with higher-order shear deformation. Compos B Eng 36:496–503CrossRef Akhras G, Li W (2005) Static and free vibration analysis of composite plates using spline finite strips with higher-order shear deformation. Compos B Eng 36:496–503CrossRef
72.
Zurück zum Zitat Ray MC (2003) Zeroth-order shear deformation theory for laminated composite plates. J Appl Mech 70:374–380MATHCrossRef Ray MC (2003) Zeroth-order shear deformation theory for laminated composite plates. J Appl Mech 70:374–380MATHCrossRef
73.
Zurück zum Zitat Matsunaga H (2000) Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos Struct 48:231–244CrossRef Matsunaga H (2000) Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos Struct 48:231–244CrossRef
74.
Zurück zum Zitat Wu C-P, Chen W-Y (1994) Vibration and stability of laminated plates based on a local high order plate theory. J Sound Vib 177:503–520MATHCrossRef Wu C-P, Chen W-Y (1994) Vibration and stability of laminated plates based on a local high order plate theory. J Sound Vib 177:503–520MATHCrossRef
75.
Zurück zum Zitat Cho KN, Bert CW, Striz AG (1991) Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory. J Sound Vib 145:429–442CrossRef Cho KN, Bert CW, Striz AG (1991) Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory. J Sound Vib 145:429–442CrossRef
76.
Zurück zum Zitat Kant T, Manjunatha BS (1988) An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node. Eng Comput 5:300–308CrossRef Kant T, Manjunatha BS (1988) An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node. Eng Comput 5:300–308CrossRef
77.
Zurück zum Zitat Pandya BN, Kant T (1988) Finite element analysis of laminated composite plates using a higher-order displacement model. Compos Sci Technol 32:137–155CrossRef Pandya BN, Kant T (1988) Finite element analysis of laminated composite plates using a higher-order displacement model. Compos Sci Technol 32:137–155CrossRef
78.
Zurück zum Zitat Senthilnathan NR, Lim SP, Lee KH, Chow ST (1987) Buckling of shear-deformable plates. AIAA J 25:1268–1271CrossRef Senthilnathan NR, Lim SP, Lee KH, Chow ST (1987) Buckling of shear-deformable plates. AIAA J 25:1268–1271CrossRef
79.
Zurück zum Zitat Phan ND, Reddy JN (1985) Analysis of laminated composite plates using a higher-order shear deformation theory. Int J Numer Meth Eng 21:2201–2219MATHCrossRef Phan ND, Reddy JN (1985) Analysis of laminated composite plates using a higher-order shear deformation theory. Int J Numer Meth Eng 21:2201–2219MATHCrossRef
80.
Zurück zum Zitat Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752MATHCrossRef Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752MATHCrossRef
81.
Zurück zum Zitat Whitney JM, Pagano NJ (1970) Shear deformation in heterogeneous anisotropic plates. J Appl Mech 37:1031–1036MATHCrossRef Whitney JM, Pagano NJ (1970) Shear deformation in heterogeneous anisotropic plates. J Appl Mech 37:1031–1036MATHCrossRef
82.
Zurück zum Zitat Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18:31–38MATH Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18:31–38MATH
83.
Zurück zum Zitat Kirchhoff GR (1850) Uber das gleichgewicht und die bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik (Crelle’s Journal) Kirchhoff GR (1850) Uber das gleichgewicht und die bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik (Crelle’s Journal)
84.
Zurück zum Zitat Kalita K, Shivakoti I, Ghadai RK (2017) Optimizing process parameters for laser beam micro-marking using a genetic algorithm and particle swarm optimization. Mater Manuf Process 32(10):1101–1108CrossRef Kalita K, Shivakoti I, Ghadai RK (2017) Optimizing process parameters for laser beam micro-marking using a genetic algorithm and particle swarm optimization. Mater Manuf Process 32(10):1101–1108CrossRef
85.
Zurück zum Zitat Stehlík M, Střelec L, Thulin M (2014) On robust testing for normality in chemometrics. Chemometr Intell Lab Syst 130:98–108CrossRef Stehlík M, Střelec L, Thulin M (2014) On robust testing for normality in chemometrics. Chemometr Intell Lab Syst 130:98–108CrossRef
86.
Zurück zum Zitat Ragavendran U, Ghadai RK, Bhoi AK, Ramachandran M, Kalita K (2019) Sensitivity analysis and optimization of EDM process. Trans Can Soc Mech Eng 43(1):13–25CrossRef Ragavendran U, Ghadai RK, Bhoi AK, Ramachandran M, Kalita K (2019) Sensitivity analysis and optimization of EDM process. Trans Can Soc Mech Eng 43(1):13–25CrossRef
87.
Zurück zum Zitat Shooshtari A, Razavi S (2010) A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates. Compos Struct 92(11):2663–2675CrossRef Shooshtari A, Razavi S (2010) A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates. Compos Struct 92(11):2663–2675CrossRef
88.
Zurück zum Zitat Shivakoti I, Pradhan BB, Diyaley S, Ghadai RK, Kalita K (2017) Fuzzy TOPSIS-based selection of laser beam micro-marking process parameters. Arab J Sci Eng 42(11):4825–4831CrossRef Shivakoti I, Pradhan BB, Diyaley S, Ghadai RK, Kalita K (2017) Fuzzy TOPSIS-based selection of laser beam micro-marking process parameters. Arab J Sci Eng 42(11):4825–4831CrossRef
89.
Zurück zum Zitat Kalita K, Ragavendran U, Ramachandran M, Bhoi AK (2019) Weighted sum multi-objective optimization of skew composite laminates. Struct Eng Mech 69(1):21–31 Kalita K, Ragavendran U, Ramachandran M, Bhoi AK (2019) Weighted sum multi-objective optimization of skew composite laminates. Struct Eng Mech 69(1):21–31
Metadaten
Titel
Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses
verfasst von
Kanak Kalita
Tanmoy Mukhopadhyay
Partha Dey
Salil Haldar
Publikationsdatum
13.06.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 12/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04280-z

Weitere Artikel der Ausgabe 12/2020

Neural Computing and Applications 12/2020 Zur Ausgabe

Hybrid Artificial Intelligence and Machine Learning Technologies

Recurrent neural network with attention mechanism for language model

Premium Partner