Skip to main content
Erschienen in: Neural Computing and Applications 20/2020

30.07.2019 | Recent Advances in Deep Learning for Medical Image Processing

A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians

verfasst von: Steven Lawrence Fernandes, U. John Tanik, V. Rajinikanth, K. Arvind Karthik

Erschienen in: Neural Computing and Applications | Ausgabe 20/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The human brain is considered to be the anatomical seat of intelligence, comprehensively supervising conscious and autonomous functions responsible for monitoring and control operations. Although neural homeostasis can be disrupted, early signs of disease should be recognized to save the patient from permanent disability and even a preventable death. The record of World Health Organization (WHO) lists various brain diseases, such as aneurism, stroke and tumor, which affect humans irrespective of their age, sex and province, all of which affect diagnosis, prognosis and treatment options. Since clinically significant diagnosis of brain abnormality is generally performed using dedicated imaging procedures and also under the supervision of an experienced radiologist, more accurate tools can make this process even more precise. The usual protocol involves a radiologist who records the three-dimensional (3D) image which provides initial insight on the type of brain disease, followed by doctor examination of the 3D/2D image that determines the treatment plan. This article proposes a tool and associated procedure to examine a clinical brain image with improved accuracy in order to provide early insight on ideal treatment procedure. In summary, this tool gives the treatment team unprecedented assessment capability before an operation by integrating all the possible image processing procedures to enhance the result in brain image analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2017) Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recogn Lett 94:87–95CrossRef Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2017) Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recogn Lett 94:87–95CrossRef
2.
Zurück zum Zitat Bauer S, Wiest R, Nolte LP et al (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97CrossRef Bauer S, Wiest R, Nolte LP et al (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97CrossRef
4.
Zurück zum Zitat Ma C, Luo G, Wang K (2018) Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images. IEEE Trans Med Imaging 37(8):1943–1954CrossRef Ma C, Luo G, Wang K (2018) Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images. IEEE Trans Med Imaging 37(8):1943–1954CrossRef
5.
Zurück zum Zitat Liu M, Zhang J, Nie D et al (2018) Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J Biomed Health 22(5):1476–1485CrossRef Liu M, Zhang J, Nie D et al (2018) Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J Biomed Health 22(5):1476–1485CrossRef
6.
Zurück zum Zitat El-Dahshan ESA, Mohsen HM, Revett K et al (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5545CrossRef El-Dahshan ESA, Mohsen HM, Revett K et al (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5545CrossRef
7.
Zurück zum Zitat Kanmani P, Marikkannu P (2018) MRI Brain Images Classification: a multi-level threshold based region optimization technique. J Med Syst 42(4):62CrossRef Kanmani P, Marikkannu P (2018) MRI Brain Images Classification: a multi-level threshold based region optimization technique. J Med Syst 42(4):62CrossRef
8.
Zurück zum Zitat Tian Z, Dey N, Ashour AS et al (2017) Morphological segmenting and neighborhood pixel-based locality preserving projection on brain fMRI dataset for semantic feature extraction: an affective computing study. Neural Comput Appl 30(12):3733–3748CrossRef Tian Z, Dey N, Ashour AS et al (2017) Morphological segmenting and neighborhood pixel-based locality preserving projection on brain fMRI dataset for semantic feature extraction: an affective computing study. Neural Comput Appl 30(12):3733–3748CrossRef
9.
Zurück zum Zitat Moraru L, Moldovanu S, Dimitrievici LT et al (2018) Texture anisotropy technique in brain degenerative diseases. Neural Comput Appl 30(5):1667–1677CrossRef Moraru L, Moldovanu S, Dimitrievici LT et al (2018) Texture anisotropy technique in brain degenerative diseases. Neural Comput Appl 30(5):1667–1677CrossRef
10.
Zurück zum Zitat Rajinikanth V, Raja NSM, Kamalanand K (2017) Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. Control Eng Appl Inform 19(3):97–106 Rajinikanth V, Raja NSM, Kamalanand K (2017) Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. Control Eng Appl Inform 19(3):97–106
11.
Zurück zum Zitat Olchowy C, Cebulski K, Łasecki M et al (2017) The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity—a systematic review. PLoS ONE 12(2):e0171704CrossRef Olchowy C, Cebulski K, Łasecki M et al (2017) The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity—a systematic review. PLoS ONE 12(2):e0171704CrossRef
12.
Zurück zum Zitat Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3):834–841CrossRef Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3):834–841CrossRef
13.
Zurück zum Zitat Kamalanand K, Ramakrishnan S (2015) Effect of gadolinium concentration on segmentation of vasculature in cardiopulmonary magnetic resonance angiograms. J Med Imaging Health Inform 5(1):147–151CrossRef Kamalanand K, Ramakrishnan S (2015) Effect of gadolinium concentration on segmentation of vasculature in cardiopulmonary magnetic resonance angiograms. J Med Imaging Health Inform 5(1):147–151CrossRef
14.
Zurück zum Zitat Rajinikanth V, Dey N, Satapathy SC et al (2018) An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Future Gener Comput Syst 85:160–172CrossRef Rajinikanth V, Dey N, Satapathy SC et al (2018) An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Future Gener Comput Syst 85:160–172CrossRef
15.
Zurück zum Zitat Rajinikanth V, Satapathy SC, Dey N et al (2018) DWT-PCA image fusion technique to improve segmentation accuracy in brain tumor analysis. LNEE 471:453–462 Rajinikanth V, Satapathy SC, Dey N et al (2018) DWT-PCA image fusion technique to improve segmentation accuracy in brain tumor analysis. LNEE 471:453–462
18.
Zurück zum Zitat Arnaud A, Forbes F, Coquery N et al (2018) Fully automatic lesion localization and characterization: application to brain tumors using multiparametric quantitative MRI data. IEEE Trans Med Imaging 37(7):1678–1689CrossRef Arnaud A, Forbes F, Coquery N et al (2018) Fully automatic lesion localization and characterization: application to brain tumors using multiparametric quantitative MRI data. IEEE Trans Med Imaging 37(7):1678–1689CrossRef
19.
Zurück zum Zitat Leandrou S, Petroudi S, Reyes-Aldasoro CC et al (2018) Quantitative MRI brain studies in mild cognitive impairment and Alzheimer’s disease: a methodological review. IEEE Rev Bio-Med Eng 11:97–111CrossRef Leandrou S, Petroudi S, Reyes-Aldasoro CC et al (2018) Quantitative MRI brain studies in mild cognitive impairment and Alzheimer’s disease: a methodological review. IEEE Rev Bio-Med Eng 11:97–111CrossRef
20.
Zurück zum Zitat Amin J, Sharif M, Yasmin M et al (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297CrossRef Amin J, Sharif M, Yasmin M et al (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297CrossRef
23.
Zurück zum Zitat Rajinikanth V, Fernandes SL, Bhushan B et al (2018) Segmentation and analysis of brain tumour using Tsallis entropy and regularised level set. LNEE 434:313–321 Rajinikanth V, Fernandes SL, Bhushan B et al (2018) Segmentation and analysis of brain tumour using Tsallis entropy and regularised level set. LNEE 434:313–321
24.
Zurück zum Zitat Thanaraj P, Parvathavarthini B (2017) Multichannel interictal spike activity detection using time–frequency entropy measure. Australas Phys Eng Sci Med 40(2):413–425CrossRef Thanaraj P, Parvathavarthini B (2017) Multichannel interictal spike activity detection using time–frequency entropy measure. Australas Phys Eng Sci Med 40(2):413–425CrossRef
25.
Zurück zum Zitat Maier O, Menze BH, Gablentz VDJ et al (2017) ISLES 2015—a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 35:250–269CrossRef Maier O, Menze BH, Gablentz VDJ et al (2017) ISLES 2015—a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 35:250–269CrossRef
26.
Zurück zum Zitat Rajinikanth V, Satapathy SC (2018) Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab J Sci Eng 43(8):4365–4378CrossRef Rajinikanth V, Satapathy SC (2018) Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab J Sci Eng 43(8):4365–4378CrossRef
27.
Zurück zum Zitat Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024CrossRef Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024CrossRef
28.
Zurück zum Zitat Liu J, Li M, Lan W et al (2018) Classification of Alzheimer’s disease using whole brain hierarchical network. IEEE ACM Trans Comput Biol Bioinform 15(2):624–632CrossRef Liu J, Li M, Lan W et al (2018) Classification of Alzheimer’s disease using whole brain hierarchical network. IEEE ACM Trans Comput Biol Bioinform 15(2):624–632CrossRef
29.
Zurück zum Zitat Bai X, Zhang Y, Liu H et al (2018) Similarity measure-based possibilistic FCM with label information for brain MRI segmentation. IEEE Trans Cybern 6:30663–30679 Bai X, Zhang Y, Liu H et al (2018) Similarity measure-based possibilistic FCM with label information for brain MRI segmentation. IEEE Trans Cybern 6:30663–30679
30.
Zurück zum Zitat Wang G, Li W, Zuluaga MA et al (2018) Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Trans Med Imaging 37(7):1562–1573CrossRef Wang G, Li W, Zuluaga MA et al (2018) Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Trans Med Imaging 37(7):1562–1573CrossRef
34.
Zurück zum Zitat Dey N, Ashour AS, Beagum S et al (2015) Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising. J Imaging 1(1):60–84CrossRef Dey N, Ashour AS, Beagum S et al (2015) Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising. J Imaging 1(1):60–84CrossRef
35.
Zurück zum Zitat Beagum S, Dey N, Ashour AS et al (2017) Nonparametric de-noising filter optimization using structure-based microscopic image classification. Microsc Res Tech 80(4):419–429CrossRef Beagum S, Dey N, Ashour AS et al (2017) Nonparametric de-noising filter optimization using structure-based microscopic image classification. Microsc Res Tech 80(4):419–429CrossRef
36.
Zurück zum Zitat Sarkar S, Paul S, Burman R et al (2014) A fuzzy entropy based multi-level image thresholding using differential evolution. LNCS 8947:386–395MathSciNet Sarkar S, Paul S, Burman R et al (2014) A fuzzy entropy based multi-level image thresholding using differential evolution. LNCS 8947:386–395MathSciNet
37.
Zurück zum Zitat Tao WB, Tian JW, Liu J (2003) Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recogn Lett 24:3069–3078CrossRef Tao WB, Tian JW, Liu J (2003) Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recogn Lett 24:3069–3078CrossRef
38.
Zurück zum Zitat Haralick RM, Shanmugam K, Dinstein I (1973) Textural features of image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRef Haralick RM, Shanmugam K, Dinstein I (1973) Textural features of image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRef
39.
Zurück zum Zitat Soh L, Tsatsoulis C (1999) Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans Geosci Remote Sens 37(2):780–795CrossRef Soh L, Tsatsoulis C (1999) Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans Geosci Remote Sens 37(2):780–795CrossRef
40.
Zurück zum Zitat Clausi DA (2002) An analysis of co-occurrence texture statistics as a function of grey level quantization. Can J Remote Sens 28(1):45–62CrossRef Clausi DA (2002) An analysis of co-occurrence texture statistics as a function of grey level quantization. Can J Remote Sens 28(1):45–62CrossRef
41.
Zurück zum Zitat Maier O, Wilms M, Gablentz VDJ et al (2015) Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 240:89–100CrossRef Maier O, Wilms M, Gablentz VDJ et al (2015) Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 240:89–100CrossRef
42.
Zurück zum Zitat Chaddad A, Tanougast C (2016) Quantitative evaluation of robust skull stripping and tumour detection applied to axial MR images. Brain Inform 3(1):53–61CrossRef Chaddad A, Tanougast C (2016) Quantitative evaluation of robust skull stripping and tumour detection applied to axial MR images. Brain Inform 3(1):53–61CrossRef
43.
Zurück zum Zitat Lu H, Kot AC, Shi YQ (2004) Distance-reciprocal distortion measure for binary document images. IEEE Signal Process Lett 11(2):228–231CrossRef Lu H, Kot AC, Shi YQ (2004) Distance-reciprocal distortion measure for binary document images. IEEE Signal Process Lett 11(2):228–231CrossRef
44.
Zurück zum Zitat Moghaddam RF, Cheriet M (2010) A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognit 43(6):2186–2198MATHCrossRef Moghaddam RF, Cheriet M (2010) A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognit 43(6):2186–2198MATHCrossRef
45.
Zurück zum Zitat Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315CrossRef Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315CrossRef
46.
Zurück zum Zitat Li C, Xu C (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254MathSciNetMATHCrossRef Li C, Xu C (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254MathSciNetMATHCrossRef
47.
Zurück zum Zitat Wang C, Li D, Li Z, Wang D, Dey N, Biswas A, Moraru L, Sherratt RS, Shi F (2019) An efficient local binary pattern based plantar pressure optical sensor image classification using convolutional neural networks). Optik 185:543–557CrossRef Wang C, Li D, Li Z, Wang D, Dey N, Biswas A, Moraru L, Sherratt RS, Shi F (2019) An efficient local binary pattern based plantar pressure optical sensor image classification using convolutional neural networks). Optik 185:543–557CrossRef
Metadaten
Titel
A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians
verfasst von
Steven Lawrence Fernandes
U. John Tanik
V. Rajinikanth
K. Arvind Karthik
Publikationsdatum
30.07.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 20/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04369-5

Weitere Artikel der Ausgabe 20/2020

Neural Computing and Applications 20/2020 Zur Ausgabe

S.I. : Advances in Bio-Inspired Intelligent Systems

Neural networks fusion for temperature forecasting

Recent Advances in Deep Learning for Medical Image Processing

Brain tumor detection: a long short-term memory (LSTM)-based learning model

Premium Partner