Skip to main content
Erschienen in: Neural Computing and Applications 9/2021

24.11.2020 | S.I. : SPIoT 2020

Adaptive control of manipulator based on neural network

verfasst von: Aiqin Liu, Honghua Zhao, Tao Song, Zhi Liu, Haibin Wang, Dianmin Sun

Erschienen in: Neural Computing and Applications | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the development of economic science and technology, the development of computer vision has undergone rapid changes, and various products relying on computer vision are also more and more, such as smart home, robot technology, and so on. At present, robot technology has become a very important part of the development of human science and technology, and in the field of industrial robots, the most rapid development is the robot with robot arm adaptive motion. It is very necessary to study the adaptive motion control of the manipulator based on machine learning. The robot with the adaptive motion of the manipulator can carry out logistics express sorting, operate in the doors and windows outside the building, and pick fruits in the orchard, which can ensure the effective implementation of hard work. Therefore, this paper proposes a mechanical adaptive control method based on a neural network. According to the motion model of the manipulator, the RBF neural network model is used to judge the stability of the system according to the Lyapunov function. The related algorithms of machine learning and multi-degree of freedom manipulator are studied and improved. The RBF neural network model approximates the unknown function infinitely and then establishes the complex motion model. Aiming at the adaptive neural network of a manipulator, a network adaptive terminal control method is proposed. Firstly, a stable manipulator motion system is designed by using a neural network, and then the terminal synovial controller is designed by using backstepping control technology. The stability of the method is proved by using the approximation virtual control technology of the neural network. The adaptive control is realized by using the learning and self-adaptability of the neural network; thus, the stability analysis of the closed-loop system is realized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu YC, Khong MH (2015) Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. IEEE/ASME Trans Mechatron 20(5):2550–2562CrossRef Liu YC, Khong MH (2015) Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. IEEE/ASME Trans Mechatron 20(5):2550–2562CrossRef
2.
Zurück zum Zitat Tok DKS, Yu DL, Mathews C et al (2015) Adaptive structure radial basis function netbook model for processes with operating region migration. Neurocomputing 155:186–193CrossRef Tok DKS, Yu DL, Mathews C et al (2015) Adaptive structure radial basis function netbook model for processes with operating region migration. Neurocomputing 155:186–193CrossRef
3.
Zurück zum Zitat Yang H, Liu J (2018) An adaptive RBF neural netbook control method for a class of nonlinear systems. IEEE/CAA J Autom Snica 5(2):457–462CrossRef Yang H, Liu J (2018) An adaptive RBF neural netbook control method for a class of nonlinear systems. IEEE/CAA J Autom Snica 5(2):457–462CrossRef
4.
Zurück zum Zitat Mandava RK, Vundavilli PR (2020) An adaptive PID control algorithm for the two-legged robot walking on a slope. Neural Comput Appl 32:3407–3421CrossRef Mandava RK, Vundavilli PR (2020) An adaptive PID control algorithm for the two-legged robot walking on a slope. Neural Comput Appl 32:3407–3421CrossRef
5.
Zurück zum Zitat Kumar A, Sharma R, Varshney P (2018) Lyapunov fuzzy Markov game controller for two link robotic manipulator. J Intell Fuzzy Syst 34(3):1479–1490CrossRef Kumar A, Sharma R, Varshney P (2018) Lyapunov fuzzy Markov game controller for two link robotic manipulator. J Intell Fuzzy Syst 34(3):1479–1490CrossRef
6.
Zurück zum Zitat Xin Q, Bai L, Meng J (2019) Manipulator control based on adaptive fuzzy neural network. Autom Instrum 11(19):1001–1088 Xin Q, Bai L, Meng J (2019) Manipulator control based on adaptive fuzzy neural network. Autom Instrum 11(19):1001–1088
7.
Zurück zum Zitat Tenreiro Machado JA, Lopes Antonio M (2017) A fractional perspective on the trajectory control of redundant and hyper-redundant robot manipulators. Appl Math Model 46(11):716–726MathSciNetCrossRef Tenreiro Machado JA, Lopes Antonio M (2017) A fractional perspective on the trajectory control of redundant and hyper-redundant robot manipulators. Appl Math Model 46(11):716–726MathSciNetCrossRef
8.
Zurück zum Zitat Huang SJ, Huang KS, Chiou KC (2015) Development and application of a novel radial basis function sing mode controller. Mechatronics 13(4):313–329CrossRef Huang SJ, Huang KS, Chiou KC (2015) Development and application of a novel radial basis function sing mode controller. Mechatronics 13(4):313–329CrossRef
9.
Zurück zum Zitat Ren Y (2019) Research on motion planning of manipulator based on machine learning. Autom Instrum 45(9):181–190 Ren Y (2019) Research on motion planning of manipulator based on machine learning. Autom Instrum 45(9):181–190
10.
Zurück zum Zitat Xie L (2018) Dynamic obstacle avoidance planning of redundant manipulator. Hangzhou Zhejiang Univ 11(21):1122–1156 Xie L (2018) Dynamic obstacle avoidance planning of redundant manipulator. Hangzhou Zhejiang Univ 11(21):1122–1156
11.
Zurück zum Zitat Fang Z, Zeng Y, Li J (2018) Research and implementation of adaptive control of manipulator based on neural network. Comput Program Skills Maint 003(4–8):12 Fang Z, Zeng Y, Li J (2018) Research and implementation of adaptive control of manipulator based on neural network. Comput Program Skills Maint 003(4–8):12
12.
Zurück zum Zitat Zhang J, Zhang Y, Zhao D (2020) Model free adaptive neural network synchronization control for multi manipulator systems. J Shandong Univ Sci Technol 01(014):100–180 Zhang J, Zhang Y, Zhao D (2020) Model free adaptive neural network synchronization control for multi manipulator systems. J Shandong Univ Sci Technol 01(014):100–180
13.
Zurück zum Zitat Gu Y, Liu H (2018) J Huazhong Univ Sci Technol 09(3):156–165 Gu Y, Liu H (2018) J Huazhong Univ Sci Technol 09(3):156–165
14.
Zurück zum Zitat Pan Q, Tang ZJ (2016) Design of humanoid manipulator grasping and moving system based on stepping motor control. Sci Technol Commun 32(3):118–121 Pan Q, Tang ZJ (2016) Design of humanoid manipulator grasping and moving system based on stepping motor control. Sci Technol Commun 32(3):118–121
Metadaten
Titel
Adaptive control of manipulator based on neural network
verfasst von
Aiqin Liu
Honghua Zhao
Tao Song
Zhi Liu
Haibin Wang
Dianmin Sun
Publikationsdatum
24.11.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05515-0

Weitere Artikel der Ausgabe 9/2021

Neural Computing and Applications 9/2021 Zur Ausgabe

Premium Partner