Skip to main content
Erschienen in: Microsystem Technologies 6/2015

01.06.2015 | Technical Paper

An orthogonal analysis method for decoupling the nozzle geometrical parameters of microthrusters

verfasst von: Qiang Shen, Weizheng Yuan, Xiaoping Li, Jianbing Xie, Honglong Chang

Erschienen in: Microsystem Technologies | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes an orthogonal analysis method for decoupling the multiple nozzle geometrical parameters of microthrusters, thus an reconfigured design can be implemented to generate a proper thrust. In this method, the effects of various nozzle geometrical parameters, including throat width W t , half convergence angle θ in , half divergence angle θ out , exit-to-throat section ratio W e /W t and throat radius of the curvature R t /W t , on the performance of microthrusters are sorted by range analysis. Analysis results show that throat width seriously affects thrust because range value of 67.53 mN is extremely larger than the range value of other geometry parameters. For average specific impulse (ASI), the range value of exit-to-throat section ratio W e /W t and half divergence angle θ out are 4.82 s and 3.72 s, respectively. Half convergence angle with the range value of 0.39 s and throat radius with 0.32 s have less influence on ASI compared with exit-to-throat section ratio and half divergence angle. When increasing the half convergence angle from 10° to 40° and throat radius of the curvature from 3 to 9, average specific impulse initially decreases and then increases. A MEMS solid propellant thruster (MSPT) with the reconfigured geometrical parameters of nozzle is fabricated to verify the feasibility of the proposed method. The thrust of the microthruster can reach 25 mN. Power is estimated to be 0.84 W. This work provides design guideline to reasonably configure geometry parameters of microthruster.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahn J, Lee D (2013) Computational prediction of the thrust characteristics of a small thruster at low pressure condition. In: Proceedings 49th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibition, p 3908 Ahn J, Lee D (2013) Computational prediction of the thrust characteristics of a small thruster at low pressure condition. In: Proceedings 49th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibition, p 3908
Zurück zum Zitat Bayt R (1999) Analysis, fabricaiton and testing of a MEMS-based micro propulsion system. Massachusetts Institute of Technology, Cambridge Bayt R (1999) Analysis, fabricaiton and testing of a MEMS-based micro propulsion system. Massachusetts Institute of Technology, Cambridge
Zurück zum Zitat Cheah KH, Chin JK (2011) Performance improvement on MEMS micropropulsion system through a novel two-depth micronozzle design. Acta Astronaut 69:59–70CrossRef Cheah KH, Chin JK (2011) Performance improvement on MEMS micropropulsion system through a novel two-depth micronozzle design. Acta Astronaut 69:59–70CrossRef
Zurück zum Zitat Cheah KH, Koh KS, Chiang CL et al (2011) Progress on development of Al2O3-Sio2 ceramic MEMS-based monopropellant micropropulsion system. In: Proceedings 47th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibition, p 5923 Cheah KH, Koh KS, Chiang CL et al (2011) Progress on development of Al2O3-Sio2 ceramic MEMS-based monopropellant micropropulsion system. In: Proceedings 47th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibition, p 5923
Zurück zum Zitat Darbandi M, Roohi E (2013) Applying a hybrid Dsmc/Navier-stokes frame to explore the effect of splitter catalyst plates in micro/nanopropulsion systems. Sens Actuator A 189:409–419CrossRef Darbandi M, Roohi E (2013) Applying a hybrid Dsmc/Navier-stokes frame to explore the effect of splitter catalyst plates in micro/nanopropulsion systems. Sens Actuator A 189:409–419CrossRef
Zurück zum Zitat Esper J, Neeck S, Slavin JA et al (2003) Nano/micro satellite constellations for earth and space science. Acta Astronaut 52:785–791CrossRef Esper J, Neeck S, Slavin JA et al (2003) Nano/micro satellite constellations for earth and space science. Acta Astronaut 52:785–791CrossRef
Zurück zum Zitat Gustafsson BK, Cuppoletti D, Gutmark E et al (2012) Nozzle throat optimization for supersonic jet noise reduction. In: Proceedings 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 0247 Gustafsson BK, Cuppoletti D, Gutmark E et al (2012) Nozzle throat optimization for supersonic jet noise reduction. In: Proceedings 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 0247
Zurück zum Zitat Hitt DL, Zakrzwski CM, Thomas MA (2001) MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater Struct 10:1163–1175CrossRef Hitt DL, Zakrzwski CM, Thomas MA (2001) MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater Struct 10:1163–1175CrossRef
Zurück zum Zitat Köhler J, Bejhed J, Kratz H et al (2002) A hybrid cold gas microthruster system for spacecraft. Sens Actuators A 97–98:587–598CrossRef Köhler J, Bejhed J, Kratz H et al (2002) A hybrid cold gas microthruster system for spacecraft. Sens Actuators A 97–98:587–598CrossRef
Zurück zum Zitat Kondo K, Tanaka S, Habu H et al (2004) Vacuum test of a micro solid propellant rocket array thruster. IEICE Electronics Express. 1:222–227CrossRef Kondo K, Tanaka S, Habu H et al (2004) Vacuum test of a micro solid propellant rocket array thruster. IEICE Electronics Express. 1:222–227CrossRef
Zurück zum Zitat Lee J, Kim T (2013) MEMS solid propellant thruster array with micro membrane igniter. Sens Actuators A 190:52–60CrossRef Lee J, Kim T (2013) MEMS solid propellant thruster array with micro membrane igniter. Sens Actuators A 190:52–60CrossRef
Zurück zum Zitat Lee J, Kim K, Kwon S (2010) Design, fabrication, and testing of MEMS solid propellant thruster array chip on glass wafer. Sens Actuators A 157:126–134CrossRef Lee J, Kim K, Kwon S (2010) Design, fabrication, and testing of MEMS solid propellant thruster array chip on glass wafer. Sens Actuators A 157:126–134CrossRef
Zurück zum Zitat Lewis DH Jr, Janson SW, Cohen RB et al (2000) Digital micropropulsion. Sens Actuators A 80:143–154CrossRef Lewis DH Jr, Janson SW, Cohen RB et al (2000) Digital micropropulsion. Sens Actuators A 80:143–154CrossRef
Zurück zum Zitat London AP, Ayón AA, Epstein AH et al (2001) Microfabrication of a high pressure bipropellant rocket engine. Sens Actuators A 92:351–357CrossRef London AP, Ayón AA, Epstein AH et al (2001) Microfabrication of a high pressure bipropellant rocket engine. Sens Actuators A 92:351–357CrossRef
Zurück zum Zitat Louisos WF, Hitt DL (2008) Viscous effects on performance of two-dimensional supersonic linear micronozzles. J Propul Power 45:706–715 Louisos WF, Hitt DL (2008) Viscous effects on performance of two-dimensional supersonic linear micronozzles. J Propul Power 45:706–715
Zurück zum Zitat Louisos WF, Hitt DL (2011) Transient analysis of supersonic Viscous flow in 3D micronozzles. In: Proceedings 41st AIAA fluid dynamics conference and exhibition, p 3996 Louisos WF, Hitt DL (2011) Transient analysis of supersonic Viscous flow in 3D micronozzles. In: Proceedings 41st AIAA fluid dynamics conference and exhibition, p 3996
Zurück zum Zitat Mern J, Agarwal R (2013) A study of numerical simulation of supersonic conical nozzle exhaust. In: Proceedings 49th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibition, p 3697 Mern J, Agarwal R (2013) A study of numerical simulation of supersonic conical nozzle exhaust. In: Proceedings 49th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibition, p 3697
Zurück zum Zitat Rossi C, Larangot B, Lagrange D et al (2005) Final characterizations of mems based pyrotechnical microthrusters. Sens Actuators A 121:508–514CrossRef Rossi C, Larangot B, Lagrange D et al (2005) Final characterizations of mems based pyrotechnical microthrusters. Sens Actuators A 121:508–514CrossRef
Zurück zum Zitat Sasanapuri B, Kumar M, Wirogo S et al (2013) Numerical simulation of a supersonic cruise nozzle. In: Proceedings 51th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 0492 Sasanapuri B, Kumar M, Wirogo S et al (2013) Numerical simulation of a supersonic cruise nozzle. In: Proceedings 51th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 0492
Zurück zum Zitat Shen Q, Yuan W, Li X et al (2013) A fully decoupled design method for mems microthruster based on orthogonal analysis. In: Proceedings transducers 2013, p 2353–2356 Shen Q, Yuan W, Li X et al (2013) A fully decoupled design method for mems microthruster based on orthogonal analysis. In: Proceedings transducers 2013, p 2353–2356
Zurück zum Zitat Spotts N, Guzik S, Gao X (2013) A CFD analysis of compressible flow through convergent-conical nozzles. In: Proceedings 49th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibition, p 3734 Spotts N, Guzik S, Gao X (2013) A CFD analysis of compressible flow through convergent-conical nozzles. In: Proceedings 49th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibition, p 3734
Zurück zum Zitat Tanaka S, Kondo K, Habu H et al (2008) Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster. Sens Actuators A 144:361–366CrossRef Tanaka S, Kondo K, Habu H et al (2008) Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster. Sens Actuators A 144:361–366CrossRef
Zurück zum Zitat Zelesnik D, Micci MM, Long LN (1993) DSMC simulation of low reynolds number nozzle flows. In: Proceedings 29th AIAA/SAE/ASME/ASEE joint propulsion conference and exhibition, p 2490 Zelesnik D, Micci MM, Long LN (1993) DSMC simulation of low reynolds number nozzle flows. In: Proceedings 29th AIAA/SAE/ASME/ASEE joint propulsion conference and exhibition, p 2490
Zurück zum Zitat Zhang KL, Chou SK, Ang SS (2004) Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface. J Micromech Microeng 14:785–792CrossRef Zhang KL, Chou SK, Ang SS (2004) Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface. J Micromech Microeng 14:785–792CrossRef
Zurück zum Zitat Zhao X, Xu W, Shi Y et al (2002) Mathematical statistics. Science Publishing House, Beijing Zhao X, Xu W, Shi Y et al (2002) Mathematical statistics. Science Publishing House, Beijing
Metadaten
Titel
An orthogonal analysis method for decoupling the nozzle geometrical parameters of microthrusters
verfasst von
Qiang Shen
Weizheng Yuan
Xiaoping Li
Jianbing Xie
Honglong Chang
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 6/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2240-6

Weitere Artikel der Ausgabe 6/2015

Microsystem Technologies 6/2015 Zur Ausgabe

Neuer Inhalt