Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 3/2017

31.03.2016 | Original Paper

A Thermoplasticity Model for Oil Shale

verfasst von: Joshua A. White, Alan K. Burnham, David W. Camp

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Several regions of the world have abundant oil shale resources, but accessing this energy supply poses a number of challenges. One particular difficulty is the thermomechanical behavior of the material. When heated to sufficient temperatures, thermal conversion of kerogen to oil, gas, and other products takes place. This alteration of microstructure leads to a complex geomechanical response. In this work, we develop a thermoplasticity model for oil shale. The model is based on critical state plasticity, a framework often used for modeling clays and soft rocks. The model described here allows for both hardening due to mechanical deformation and softening due to thermal processes. In particular, the preconsolidation pressure—defining the onset of plastic volumetric compaction—is controlled by a state variable representing the kerogen content of the material. As kerogen is converted to other phases, the material weakens and plastic compaction begins. We calibrate and compare the proposed model to a suite of high-temperature uniaxial and triaxial experiments on core samples from a pilot in situ processing operation in the Green River Formation. We also describe avenues for future work to improve understanding and prediction of the geomechanical behavior of oil shale operations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Berchenko IE et al (2006) In situ thermal processing of an oil shale formation using a pattern of heat sources. US Patent 6,991,032 B2 Berchenko IE et al (2006) In situ thermal processing of an oil shale formation using a pattern of heat sources. US Patent 6,991,032 B2
Zurück zum Zitat Borja RI, Lee SR (1990) Cam-Clay plasticity, Part I: implicit integration of elasto–plastic constitutive relations. Comp Methods Appl Mech Eng 78(1):49–72CrossRef Borja RI, Lee SR (1990) Cam-Clay plasticity, Part I: implicit integration of elasto–plastic constitutive relations. Comp Methods Appl Mech Eng 78(1):49–72CrossRef
Zurück zum Zitat Borja RI (2013) Plasticity: modeling and computation. Springer, New YorkCrossRef Borja RI (2013) Plasticity: modeling and computation. Springer, New YorkCrossRef
Zurück zum Zitat Burnham AK, Day RL, Wallman PH, McConaghy JR, Harris HG, Lerwick P, Vawter RG (2011) In situ method and system for extraction of oil from shale. US Patent 7,921,907 Burnham AK, Day RL, Wallman PH, McConaghy JR, Harris HG, Lerwick P, Vawter RG (2011) In situ method and system for extraction of oil from shale. US Patent 7,921,907
Zurück zum Zitat Burnham AK, Day RL, Wallman PH, McConaghy JR (2012) In situ method for extraction of oil from shale. US Patent 8,162,043 Burnham AK, Day RL, Wallman PH, McConaghy JR (2012) In situ method for extraction of oil from shale. US Patent 8,162,043
Zurück zum Zitat Burnham AK, McConaghy JR (2014) Semi-open pyrolysis of oil shale from the Garden Gulch Member of the Green River Formation. Energy Fuels 28:7426–7439CrossRef Burnham AK, McConaghy JR (2014) Semi-open pyrolysis of oil shale from the Garden Gulch Member of the Green River Formation. Energy Fuels 28:7426–7439CrossRef
Zurück zum Zitat Closmann PJ, Bradley WB (1979) The effect of temperature on tensile and compressive strengths and Young’s modulus of oil shale. SPE J 19(5):301–312CrossRef Closmann PJ, Bradley WB (1979) The effect of temperature on tensile and compressive strengths and Young’s modulus of oil shale. SPE J 19(5):301–312CrossRef
Zurück zum Zitat Drucker DC, Prager W (1952) Soil mechanics and plastic analysis for limit design. Q Appl Math 10:157–165CrossRef Drucker DC, Prager W (1952) Soil mechanics and plastic analysis for limit design. Q Appl Math 10:157–165CrossRef
Zurück zum Zitat Duvall FEW, Sohn HY, Pitt CH, Bronson MC (1983) Physical behaviour of oil shale at various temperatures and compressive loads: 1. Free thermal expansion. Fuel 62(12):1455–1461CrossRef Duvall FEW, Sohn HY, Pitt CH, Bronson MC (1983) Physical behaviour of oil shale at various temperatures and compressive loads: 1. Free thermal expansion. Fuel 62(12):1455–1461CrossRef
Zurück zum Zitat Duvall FEW, Sohn HY, Pitt CH (1985a) Physical behaviour of oil shale at various temperatures and compressive loads: 2. Thermal expansion under various loads. Fuel 64(2):184–188CrossRef Duvall FEW, Sohn HY, Pitt CH (1985a) Physical behaviour of oil shale at various temperatures and compressive loads: 2. Thermal expansion under various loads. Fuel 64(2):184–188CrossRef
Zurück zum Zitat Duvall FEW, Sohn HY, Pitt CH (1985b) Physical behaviour of oil shale at various temperatures and compressive loads: 3. Structural failure under loads. Fuel 64(7):938–940CrossRef Duvall FEW, Sohn HY, Pitt CH (1985b) Physical behaviour of oil shale at various temperatures and compressive loads: 3. Structural failure under loads. Fuel 64(7):938–940CrossRef
Zurück zum Zitat Eseme E, Urai JL, Krooss BM, Littke R (2007) Review of mechanical properties of oil shales: implications for exploitation and basin modelling. Oil Shale 24(2):159–174 Eseme E, Urai JL, Krooss BM, Littke R (2007) Review of mechanical properties of oil shales: implications for exploitation and basin modelling. Oil Shale 24(2):159–174
Zurück zum Zitat Fan Y, Durlofsky L, Tchelepi HA (2010) Numerical simulation of the in-situ upgrading of oil shale. SPE J 15(02):368–381CrossRef Fan Y, Durlofsky L, Tchelepi HA (2010) Numerical simulation of the in-situ upgrading of oil shale. SPE J 15(02):368–381CrossRef
Zurück zum Zitat Kaminsky RD, Symington WA, Yeakel JD, Thomas MM (2014) In situ co-development of oil shale with mineral recovery. US Patent 8,641,150 B2 Kaminsky RD, Symington WA, Yeakel JD, Thomas MM (2014) In situ co-development of oil shale with mineral recovery. US Patent 8,641,150 B2
Zurück zum Zitat Laloui L, Cekerevac C (2003) Thermo-plasticity of clays: an isotropic yield mechanism. Comp Geotech 30(8):649–660CrossRef Laloui L, Cekerevac C (2003) Thermo-plasticity of clays: an isotropic yield mechanism. Comp Geotech 30(8):649–660CrossRef
Zurück zum Zitat Le Doan TV, Bostrom NW, Burnham AK, Kleinberg RL, Pomerantz AE, Allix P (2013) Green River oil shale pyrolysis: semi-open conditions. Energy Fuels 27:6447–6459CrossRef Le Doan TV, Bostrom NW, Burnham AK, Kleinberg RL, Pomerantz AE, Allix P (2013) Green River oil shale pyrolysis: semi-open conditions. Energy Fuels 27:6447–6459CrossRef
Zurück zum Zitat Ljungstrom F (1953) Method of electrothermal production of shale oil. US Patent 2,634,961 Ljungstrom F (1953) Method of electrothermal production of shale oil. US Patent 2,634,961
Zurück zum Zitat Mraz T, DuBow J, Rajeshwar K (1983a) Acoustic wave propagation in oil shale: 1. Experiments. Fuel 62(10):1215–1222CrossRef Mraz T, DuBow J, Rajeshwar K (1983a) Acoustic wave propagation in oil shale: 1. Experiments. Fuel 62(10):1215–1222CrossRef
Zurück zum Zitat Mraz T, DuBow J, Rajeshwar K (1983b) Acoustic wave propagation in oil shale: 2. Modelling. Fuel 62(12):1462–1467CrossRef Mraz T, DuBow J, Rajeshwar K (1983b) Acoustic wave propagation in oil shale: 2. Modelling. Fuel 62(12):1462–1467CrossRef
Zurück zum Zitat Nova R (1986) An extended Cam Clay model for soft anisotropic rocks. Comp Geotech 2:69–88CrossRef Nova R (1986) An extended Cam Clay model for soft anisotropic rocks. Comp Geotech 2:69–88CrossRef
Zurück zum Zitat Roscoe KH, Burland JH (1968) On the generalized stress-strain behaviour of ‘wet‘ clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609 Roscoe KH, Burland JH (1968) On the generalized stress-strain behaviour of ‘wet‘ clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609
Zurück zum Zitat Schofield A, Wroth P (1968) Critical state soil mechanics. McGraw-Hill, New York Schofield A, Wroth P (1968) Critical state soil mechanics. McGraw-Hill, New York
Zurück zum Zitat Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 74:1559–1570 Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 74:1559–1570
Zurück zum Zitat US Bureau of Mines (1981) The effect of in situ retorting on oil shale pillars. Open File Report 76–82 US Bureau of Mines (1981) The effect of in situ retorting on oil shale pillars. Open File Report 76–82
Metadaten
Titel
A Thermoplasticity Model for Oil Shale
verfasst von
Joshua A. White
Alan K. Burnham
David W. Camp
Publikationsdatum
31.03.2016
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 3/2017
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-016-0947-7

Weitere Artikel der Ausgabe 3/2017

Rock Mechanics and Rock Engineering 3/2017 Zur Ausgabe