Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 4/2018

23.01.2018 | Technical Note

Effect of Thermal Treatment on Brazilian Tensile Strength of Granites with Different Grain Size Distributions

verfasst von: Zhihong Zhao, Zhina Liu, Hai Pu, Xue Li

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Since the first enhanced geothermal system (EGS) was conceived at the Fenton Hill project, the USA, in the 1970s, EGS projects have been pursued around the world (McClure and Horne 2014). EGS projects involve finding vast blocks with high-temperature (> 200 °C) and fracture systems. Water is first injected and circulated through the fracture networks in geothermal reservoirs and eventually pumped back to the surface as steam. EGS projects are commonly located in granite rocks with various mineralogical properties (Table 1). The mechanical response of “hot granites” to cooling becomes an important question to geologists and engineers.
Table 1
The mineralogical properties of granites in worldwide EGS sites
EGS sites
Minerals* (%)
Grain sizes
Qtz
Pl
Fsp
Mi
Others
Basel, Switzerland
(Alt-Epping et al. 2013; Ziegler et al. 2015)
26.0
34.5
12.2
16.1
11.2
(1) Coarser-grained at the top of the basement
(2) Finer-grained at deeper borehole sections
Cooper basin, Australia
(McLaren and Dunlap 2006; Marshall et al. 2010)
31
31
31
5
2
0.05–0.2 mm
Desert Peak, USA
(Lutz et al. 2004)
22–28
37–42
14–19
3–5
 
Medium to coarsely crystalline
Fenton hill, USA
(Laughlin et al. 1983)
32
31
6
(microcline) 28
Medium to coarse
Fjäillbacka, Sweden
(Eliasson and Schöberg 1991; Petersson and Eliasson 1997)
27–29
43–44
6–8
(microcline) 27–31
Fine- to coarse-grained
Ogachi, Japan
(Ueda et al. 2005)
45.2
11.5
19.8
23.5
Fine-grained, grain size from 0.1 to 1.7 mm
Rosemanowes, UK
(Charoy 1986)
30
30
30
10
The grain size of quartz is up to 1 mm
Soultz, France
(Stussi et al. 2002; Meller et al. 2014).
22
43
25
6
4
Between 300 and 500 μm
Habanero, Japan
(Chen and Wyborn 2009)
Innamincka granite and is comprised of 75% SiO2 and > 5% K2O
Medium- to coarse-grained
*Qtz quartz, Pl plagioclase, Fsp feldspar, Mi mica

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alt-Epping P, Diamond LW, Häring MO, Ladner F, Meiera DB (2013) Prediction of water–rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system, using constraints from the 5 km Basel-1 well. Appl Geochem 38:121–133CrossRef Alt-Epping P, Diamond LW, Häring MO, Ladner F, Meiera DB (2013) Prediction of water–rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system, using constraints from the 5 km Basel-1 well. Appl Geochem 38:121–133CrossRef
Zurück zum Zitat Browning J, Meredith P, Gudmundsson A (2016) Cooling-dominated cracking in thermally stresses volcanic rocks. Geophys Res Lett 43:8417–8425CrossRef Browning J, Meredith P, Gudmundsson A (2016) Cooling-dominated cracking in thermally stresses volcanic rocks. Geophys Res Lett 43:8417–8425CrossRef
Zurück zum Zitat Charoy B (1986) The genesis of the Cornubian batholith (South-West England): the example of the Carnmenellis pluton. J Pet 27:571–604CrossRef Charoy B (1986) The genesis of the Cornubian batholith (South-West England): the example of the Carnmenellis pluton. J Pet 27:571–604CrossRef
Zurück zum Zitat Chen D, Wyborn D (2009) Habanero field tests in the cooper basin, Australia: a proof-of-concept for EGS. GRC Trans 33:159–164 Chen D, Wyborn D (2009) Habanero field tests in the cooper basin, Australia: a proof-of-concept for EGS. GRC Trans 33:159–164
Zurück zum Zitat Eberhardt E, Stimpson B, Stead D (1999) Effect of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32:81–99CrossRef Eberhardt E, Stimpson B, Stead D (1999) Effect of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32:81–99CrossRef
Zurück zum Zitat Eliasson T, Schöberg H (1991) U-Pb dating of the post-kinematic Sveconorwegian (Grenvillian) Bohus granite, SW Sweden: evidence of restitic zircon. Precambrian Res 51:337–350CrossRef Eliasson T, Schöberg H (1991) U-Pb dating of the post-kinematic Sveconorwegian (Grenvillian) Bohus granite, SW Sweden: evidence of restitic zircon. Precambrian Res 51:337–350CrossRef
Zurück zum Zitat Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington DC, pp 29–44 Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington DC, pp 29–44
Zurück zum Zitat Heuze FE (1983) High-temperature mechanical physical and thermal properties of granitic rocks—a review. Int J Rock Mech Min Sci Geomech Abstr 20:3–10CrossRef Heuze FE (1983) High-temperature mechanical physical and thermal properties of granitic rocks—a review. Int J Rock Mech Min Sci Geomech Abstr 20:3–10CrossRef
Zurück zum Zitat ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15:99–103CrossRef ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15:99–103CrossRef
Zurück zum Zitat Itasca Consulting Group Inc. (2008) PFC2D user’s guide. Minneapolis Itasca Consulting Group Inc. (2008) PFC2D user’s guide. Minneapolis
Zurück zum Zitat Laughlin AW, Eddy AC, Laney R, Aldrich MJ Jr (1983) Geology of the Fenton Hill, New Mexico, hot dry rock site. J Volcanol Geotherm Res 15:21–41CrossRef Laughlin AW, Eddy AC, Laney R, Aldrich MJ Jr (1983) Geology of the Fenton Hill, New Mexico, hot dry rock site. J Volcanol Geotherm Res 15:21–41CrossRef
Zurück zum Zitat Lutz SJ, Robertson-Tait A, Morris CL (2004) Stratigraphic relationships in mesozoic basement rocks at the Desert. Peak east EGS area, Nevada. In: Proceedings of the 29th workshop on geothermal reservoir engineering, Stanford University, Stanford, California Lutz SJ, Robertson-Tait A, Morris CL (2004) Stratigraphic relationships in mesozoic basement rocks at the Desert. Peak east EGS area, Nevada. In: Proceedings of the 29th workshop on geothermal reservoir engineering, Stanford University, Stanford, California
Zurück zum Zitat Marshall V, Van Zyl J, Bryan SE, Uysal T, Gasparon M (2010) Comparative petrology & geochemistry of high heat-producing granites in Australia & Europe. In: Australian geothermal energy conference 2010, Adelaide, Australia Marshall V, Van Zyl J, Bryan SE, Uysal T, Gasparon M (2010) Comparative petrology & geochemistry of high heat-producing granites in Australia & Europe. In: Australian geothermal energy conference 2010, Adelaide, Australia
Zurück zum Zitat McClure MW, Horne RN (2014) An investigation of stimulation mechanisms in enhanced geothermal systems. Int J Rock Mech Min Sci 72:242–260 McClure MW, Horne RN (2014) An investigation of stimulation mechanisms in enhanced geothermal systems. Int J Rock Mech Min Sci 72:242–260
Zurück zum Zitat McLaren S, Dunlap WJ (2006) Use of 40Ar/39Ar K-feldspar thermochronology in basin thermal history reconstruction: an example from the Big Lake Suite granites, Warburton Basin, South Australia. Basin Res 18:189–203CrossRef McLaren S, Dunlap WJ (2006) Use of 40Ar/39Ar K-feldspar thermochronology in basin thermal history reconstruction: an example from the Big Lake Suite granites, Warburton Basin, South Australia. Basin Res 18:189–203CrossRef
Zurück zum Zitat Meller C, Kontny A, Kohl T (2014) Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings. Geophys J Int 199:465–479CrossRef Meller C, Kontny A, Kohl T (2014) Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings. Geophys J Int 199:465–479CrossRef
Zurück zum Zitat Peng J, Wong LNY, Teh CI (2017) Influence of grain size heterogeneity on strength and micro-cracking behavior of crystalline rocks. J Geophys Res Solid Earth 122:1054–1073CrossRef Peng J, Wong LNY, Teh CI (2017) Influence of grain size heterogeneity on strength and micro-cracking behavior of crystalline rocks. J Geophys Res Solid Earth 122:1054–1073CrossRef
Zurück zum Zitat Petersson J, Eliasson T (1997) Mineral, evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123–146CrossRef Petersson J, Eliasson T (1997) Mineral, evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123–146CrossRef
Zurück zum Zitat Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364CrossRef Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364CrossRef
Zurück zum Zitat Ranjith PG, Viete DR, Chen BJ, Perera MSA (2012) Transformation plasticity and the effect of temperature on the mechanical behavior of Hawkesbury sandstone at atmospheric pressure. Eng Geol 151:120–127CrossRef Ranjith PG, Viete DR, Chen BJ, Perera MSA (2012) Transformation plasticity and the effect of temperature on the mechanical behavior of Hawkesbury sandstone at atmospheric pressure. Eng Geol 151:120–127CrossRef
Zurück zum Zitat Roy DG, Singh TN (2016) Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition. Rock Mech Rock Eng 49:1663–1677CrossRef Roy DG, Singh TN (2016) Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition. Rock Mech Rock Eng 49:1663–1677CrossRef
Zurück zum Zitat Sabri M, Ghazvinian A, Nejati HR (2016) Effect of particle size heterogeneity on fracture toughness and failure mechanism of rocks. Int J Rock Mech Min Sci 81:79–85 Sabri M, Ghazvinian A, Nejati HR (2016) Effect of particle size heterogeneity on fracture toughness and failure mechanism of rocks. Int J Rock Mech Min Sci 81:79–85
Zurück zum Zitat Shao SS, Wasantha PLP, Ranjith PG, Chen BK (2014) Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes. Int J Rock Mech Min Sci 70:381–387 Shao SS, Wasantha PLP, Ranjith PG, Chen BK (2014) Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes. Int J Rock Mech Min Sci 70:381–387
Zurück zum Zitat Stussi JM, Cheilletz A, Royer J-J, Chèvremont P, Féraud G (2002) The hidden monzogranite of Soultz-sous-Forêts (Rhine Graben, France). Géol Fr 1:45–64 Stussi JM, Cheilletz A, Royer J-J, Chèvremont P, Féraud G (2002) The hidden monzogranite of Soultz-sous-Forêts (Rhine Graben, France). Géol Fr 1:45–64
Zurück zum Zitat Ueda A, Kato K, Ohsumi T, Yajima T, Kaieda H, Ito H, Savage D, Metcalfe R, Takase H (2005) Experimental and theoretical studies on CO2 sequestration into geothermal fields. In: Proceedings world geothermal congress 2005, Antalya, Turkey Ueda A, Kato K, Ohsumi T, Yajima T, Kaieda H, Ito H, Savage D, Metcalfe R, Takase H (2005) Experimental and theoretical studies on CO2 sequestration into geothermal fields. In: Proceedings world geothermal congress 2005, Antalya, Turkey
Zurück zum Zitat Williams H, Turner FJ, Gilbert CM (1954) Petrography. Freeman, San Francisco Williams H, Turner FJ, Gilbert CM (1954) Petrography. Freeman, San Francisco
Zurück zum Zitat Zhang L, Mao X, Liu R, Guo X, Ma D (2014) The mechanical properties of mudstone at high temperatures: an experimental study. Rock Mech Rock Eng 47:1479–1484CrossRef Zhang L, Mao X, Liu R, Guo X, Ma D (2014) The mechanical properties of mudstone at high temperatures: an experimental study. Rock Mech Rock Eng 47:1479–1484CrossRef
Zurück zum Zitat Zhao Z (2016) Thermal influence on mechanical properties of granite: a micro-cracking perspective. Rock Mech Rock Eng 49:747–762CrossRef Zhao Z (2016) Thermal influence on mechanical properties of granite: a micro-cracking perspective. Rock Mech Rock Eng 49:747–762CrossRef
Zurück zum Zitat Ziegler M, Valley B, Evans F (2015) Characterisation of nature fractures and fracture zones of the Basel EGS reservoir inferred from geophysical logging of the Basel-1 well. In: Proceedings world geothermal congress 2015, Melbourne, Australia Ziegler M, Valley B, Evans F (2015) Characterisation of nature fractures and fracture zones of the Basel EGS reservoir inferred from geophysical logging of the Basel-1 well. In: Proceedings world geothermal congress 2015, Melbourne, Australia
Metadaten
Titel
Effect of Thermal Treatment on Brazilian Tensile Strength of Granites with Different Grain Size Distributions
verfasst von
Zhihong Zhao
Zhina Liu
Hai Pu
Xue Li
Publikationsdatum
23.01.2018
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 4/2018
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-018-1404-6

Weitere Artikel der Ausgabe 4/2018

Rock Mechanics and Rock Engineering 4/2018 Zur Ausgabe