Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 10/2020

09.10.2019 | Original Paper

An Experimental Study of Effect of High Temperature on the Permeability Evolution and Failure Response of Granite Under Triaxial Compression

verfasst von: Sheng-Qi Yang, Wen-Ling Tian, Derek Elsworth, Jian-Guo Wang, Li-Feng Fan

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Granite is a viable host for deep nuclear waste disposal because its low permeability and high strength enable the stable and safe operation of the repository. We examined the evolution of the permeability and triaxial mechanical behaviour of granite after high-temperature treatment. First, the effect of the high temperature on the physical behaviour and permeability evolution of granite was analysed in detail. The mass, P-wave velocity, and thermal conductivity of granite decrease, but the volume increases with increasing temperature. The permeability of intact granite increases by four orders of magnitude as the cycled temperature increases from 25 to 800 °C. Subsequently, the effect of high temperature on the triaxial deformation and acoustic emission (AE) behaviour of granite was investigated. Under uniaxial compression at T ≤ 300 °C, the stress decreases before the peak strength is reached, corresponding to a significant AE event, which is due to the development of multiple splitting tensile fractures along the loading direction. At T ≥ 450 °C, AE event is observed once a minor stress is applied, which results from failure is controlled by thermally induced cracks. However, under triaxial compression, the temperature has little effect on the AE characteristics. The granite fails along the shear fracture plane, which becomes wider with increasing confining pressure. At T ≥ 600 °C, it is easier to form intragranular cracks and the stress quickly decreases after the peak strength is reached. The shear plane is smoother under high confining pressure. Third, the effect of high temperature on the peak strength and crack damage threshold of granite was further analysed. Generally, under uniaxial compression, the peak strength and crack damage threshold first remain relatively constant at T ≤ 300 °C, begin to decrease at T = 450 °C, and decrease more rapidly at T = 600 °C. The confining pressure notably reduces the effect of the temperature on the peak strength and crack damage threshold. Finally, the effect and mechanism of high temperature on the triaxial strength parameters of granite were further discussed. At T ≤ 300 °C, thermally induced cracks are not notable and the temperature has little effect on the strength. At 450 °C≤ T ≤ 600 °C, thermally induced cracks are more notable and the temperature has a significant effect on the strength behaviour. Because of the thermal stress released by thermal macrocrack formation, the continuous increase in the temperature has little impact on strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22(7):1456–1461 Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22(7):1456–1461
Zurück zum Zitat Chen S, Yang C, Wang G (2017a) Evolution of thermal damage and permeability of Beishan granite. Appl Therm Eng 110:1533–1542 Chen S, Yang C, Wang G (2017a) Evolution of thermal damage and permeability of Beishan granite. Appl Therm Eng 110:1533–1542
Zurück zum Zitat Chen YL, Wang SR, Ni J, Azzam R, Fernandez-Steeger TM (2017b) An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics. Eng Geol 220:234–242 Chen YL, Wang SR, Ni J, Azzam R, Fernandez-Steeger TM (2017b) An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics. Eng Geol 220:234–242
Zurück zum Zitat Chen G, Wang J, Li J, Li T, Zhang H (2018) Influence of temperature on crack initiation and propagation in granite. Int J Geomech 18(8):04018094 Chen G, Wang J, Li J, Li T, Zhang H (2018) Influence of temperature on crack initiation and propagation in granite. Int J Geomech 18(8):04018094
Zurück zum Zitat Consenza P, Ghoreychi M (1999) Effects of very low permeability on the long-term evolution of a storage cavern in rock salt. Int J Rock Mech Min Sci 36:527–533 Consenza P, Ghoreychi M (1999) Effects of very low permeability on the long-term evolution of a storage cavern in rock salt. Int J Rock Mech Min Sci 36:527–533
Zurück zum Zitat Davy CA, Skoczylas F, Barnichon JD, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth 32:667–668 Davy CA, Skoczylas F, Barnichon JD, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth 32:667–668
Zurück zum Zitat Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression. Int J Rock Mech Min Sci 36(3):279–289 Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression. Int J Rock Mech Min Sci 36(3):279–289
Zurück zum Zitat Fan LF, Gao JW, Wu ZJ, Yang SQ, Ma GW (2018) An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Appl Therm Eng 140:505–519 Fan LF, Gao JW, Wu ZJ, Yang SQ, Ma GW (2018) An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Appl Therm Eng 140:505–519
Zurück zum Zitat Gautam PK, Verma AK, Sharma P, Singh TN (2018) Evolution of thermal damage threshold of Jalore granite. Rock Mech Rock Eng 51(9):2949–2956 Gautam PK, Verma AK, Sharma P, Singh TN (2018) Evolution of thermal damage threshold of Jalore granite. Rock Mech Rock Eng 51(9):2949–2956
Zurück zum Zitat Griffiths L, Heap MJ, Baud P, Schmittbuhl J (2017) Quantification of microcrack characteristics and implications for stiffness and strength of granite. Int J Rock Mech Min Sci 100:138–150 Griffiths L, Heap MJ, Baud P, Schmittbuhl J (2017) Quantification of microcrack characteristics and implications for stiffness and strength of granite. Int J Rock Mech Min Sci 100:138–150
Zurück zum Zitat Guo LL, Zhang YB, Zhang YJ et al (2018) Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system. Renew Energy 126:107–125 Guo LL, Zhang YB, Zhang YJ et al (2018) Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system. Renew Energy 126:107–125
Zurück zum Zitat Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804 Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804
Zurück zum Zitat Hoek E (1990) Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min Sci Geomech Abstr 12:227–229 Hoek E (1990) Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min Sci Geomech Abstr 12:227–229
Zurück zum Zitat Hoek E, Brown ET (1980) Underground excavation in rock. Institution of Mining and Metallurgy, London Hoek E, Brown ET (1980) Underground excavation in rock. Institution of Mining and Metallurgy, London
Zurück zum Zitat Hu J, Sun Q, Pan X (2018) Variation of mechanical properties of granite after high-temperature treatment. Arab J Geosci 11(2):43 Hu J, Sun Q, Pan X (2018) Variation of mechanical properties of granite after high-temperature treatment. Arab J Geosci 11(2):43
Zurück zum Zitat Huang YH, Yang SQ, Tian WL, Zhao J, Ma D, Zhang CS (2017) Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment. Arch Civ Mech Eng 17(4):912–925 Huang YH, Yang SQ, Tian WL, Zhao J, Ma D, Zhang CS (2017) Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment. Arch Civ Mech Eng 17(4):912–925
Zurück zum Zitat Jiang G, Zuo J, Li L, Ma T, Wei X (2018) The evolution of cracks in Maluanshan granite subjected to different temperature processing. Rock Mech Rock Eng 51(6):1683–1695 Jiang G, Zuo J, Li L, Ma T, Wei X (2018) The evolution of cracks in Maluanshan granite subjected to different temperature processing. Rock Mech Rock Eng 51(6):1683–1695
Zurück zum Zitat Log T, Gustafsson SE (1995) Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater 19:43–49 Log T, Gustafsson SE (1995) Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater 19:43–49
Zurück zum Zitat Mckee CR, Bumb AC, Koenig RA (1988) Stress-dependent permeability and porosity of coal and other geologic formations. SPE Form Eval 3(01):81–91 Mckee CR, Bumb AC, Koenig RA (1988) Stress-dependent permeability and porosity of coal and other geologic formations. SPE Form Eval 3(01):81–91
Zurück zum Zitat Mitchell EK, Fialko Y, Brown KM (2013) Temperature dependence of frictional healing of Westerly granite: experimental observations and numerical simulations. Geochem Geophys Geosyst 14(3):567–582 Mitchell EK, Fialko Y, Brown KM (2013) Temperature dependence of frictional healing of Westerly granite: experimental observations and numerical simulations. Geochem Geophys Geosyst 14(3):567–582
Zurück zum Zitat Nasseri MHB, Schubnel A, Young RP (2007) Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min Sci 44(4):601–616 Nasseri MHB, Schubnel A, Young RP (2007) Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min Sci 44(4):601–616
Zurück zum Zitat Ranjith PG, Viete DR, Chen BJ, Perera MS (2012) Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng Geol 151:120–127 Ranjith PG, Viete DR, Chen BJ, Perera MS (2012) Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng Geol 151:120–127
Zurück zum Zitat Shao S, Ranjith PG, Wasantha PLP, Chen BK (2015) Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: an application to geothermal energy. Geothermics 54:96–108 Shao S, Ranjith PG, Wasantha PLP, Chen BK (2015) Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: an application to geothermal energy. Geothermics 54:96–108
Zurück zum Zitat Sun SH (1987) The choice of calculating scheme of mica formula. Acta Petrol Sin 4:72–82 (in Chinese) Sun SH (1987) The choice of calculating scheme of mica formula. Acta Petrol Sin 4:72–82 (in Chinese)
Zurück zum Zitat Sun Q, Zhang W, Xue L, Zhang Z, Su T (2015) Thermal damage pattern and thresholds of granite. Environ Earth Sci 74(3):2341–2349 Sun Q, Zhang W, Xue L, Zhang Z, Su T (2015) Thermal damage pattern and thresholds of granite. Environ Earth Sci 74(3):2341–2349
Zurück zum Zitat Sundberg J, Hellström G (2009) Inverse modelling of thermal conductivity from temperature measurements at the Prototype Repository, Äspö HRL. Int J Rock Mech Min Sci 46(6):1029–1041 Sundberg J, Hellström G (2009) Inverse modelling of thermal conductivity from temperature measurements at the Prototype Repository, Äspö HRL. Int J Rock Mech Min Sci 46(6):1029–1041
Zurück zum Zitat Urquhart A, Bauer S (2015) Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from 75 to 300 °C. Int J Rock Mech Min Sci 78:350–352 Urquhart A, Bauer S (2015) Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from 75 to 300 °C. Int J Rock Mech Min Sci 78:350–352
Zurück zum Zitat Wang HF, Bonner BP, Carlson SR, Kowallis BJ, Heard HC (1989) Thermal stress cracking in granite. J Geophys Res Solid Earth 94(B2):1745–1758 Wang HF, Bonner BP, Carlson SR, Kowallis BJ, Heard HC (1989) Thermal stress cracking in granite. J Geophys Res Solid Earth 94(B2):1745–1758
Zurück zum Zitat Wang Z, He A, Shi G, Mei G (2017) Temperature effect on AE energy characteristics and damage mechanical behaviors of granite. Int J Geomech 18(3):04017163 Wang Z, He A, Shi G, Mei G (2017) Temperature effect on AE energy characteristics and damage mechanical behaviors of granite. Int J Geomech 18(3):04017163
Zurück zum Zitat Williams H, Turner FJ, Gilbert CM (1954) Petrography. Freeman, San Francisco Williams H, Turner FJ, Gilbert CM (1954) Petrography. Freeman, San Francisco
Zurück zum Zitat Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones. Mech Deform J Geophys Res 102(B2):3009–3025 Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones. Mech Deform J Geophys Res 102(B2):3009–3025
Zurück zum Zitat Xu P, Yang SQ (2019) Influence of stress and high-temperature treatment on the permeability evolution behavior of sandstone. Acta Mech Sin 35(2):419–432 Xu P, Yang SQ (2019) Influence of stress and high-temperature treatment on the permeability evolution behavior of sandstone. Acta Mech Sin 35(2):419–432
Zurück zum Zitat Yang SQ, Ranjith PG, Huang YH, Yin PF, Jing HW, Gui YL, Yu QL (2015) Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading. Geophys J Int 201:662–682 Yang SQ, Ranjith PG, Huang YH, Yin PF, Jing HW, Gui YL, Yu QL (2015) Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading. Geophys J Int 201:662–682
Zurück zum Zitat Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197 Yang SQ, Ranjith PG, Jing HW, Tian WL, Ju Y (2017) An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197
Zurück zum Zitat Yang SQ, Tian WL, Huang YH (2018) Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code. Geothermics 72:124–137 Yang SQ, Tian WL, Huang YH (2018) Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code. Geothermics 72:124–137
Zurück zum Zitat Yin T, Li X, Cao W, Xia K (2015) Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mech Rock Eng 48(6):2213–2223 Yin T, Li X, Cao W, Xia K (2015) Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mech Rock Eng 48(6):2213–2223
Zurück zum Zitat Zhang F, Zhao J, Hu D, Skoczylas F, Shao J (2018) Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mech Rock Eng 51(3):677–694 Zhang F, Zhao J, Hu D, Skoczylas F, Shao J (2018) Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mech Rock Eng 51(3):677–694
Zurück zum Zitat Zhao XG, Cai M, Wang J, Li PF (2015) Strength comparison between cylindrical and prism specimens of Beishan granite under uniaxial compression. Int J Rock Mech Min Sci 76:10–17 Zhao XG, Cai M, Wang J, Li PF (2015) Strength comparison between cylindrical and prism specimens of Beishan granite under uniaxial compression. Int J Rock Mech Min Sci 76:10–17
Zurück zum Zitat Zhao XG, Wang J, Chen F, Li PF, Ma LK, Xie JL, Liu YM (2016) Experimental investigations on the thermal conductivity characteristics of Beishan granitic rocks for China’s HLW disposal. Tectonophysics 683:124–137 Zhao XG, Wang J, Chen F, Li PF, Ma LK, Xie JL, Liu YM (2016) Experimental investigations on the thermal conductivity characteristics of Beishan granitic rocks for China’s HLW disposal. Tectonophysics 683:124–137
Zurück zum Zitat Zhao Y, Feng Z, Zhao Y, Wan Z (2017) Experimental investigation on thermal cracking, permeability under HTHP and application for geothermal mining of HDR. Energy 132:305–314 Zhao Y, Feng Z, Zhao Y, Wan Z (2017) Experimental investigation on thermal cracking, permeability under HTHP and application for geothermal mining of HDR. Energy 132:305–314
Zurück zum Zitat Zhao XG, Zhao Z, Guo Z et al (2018) Influence of thermal treatment on the thermal conductivity of Beishan granite. Rock Mech Rock Eng 51(7):1–20 Zhao XG, Zhao Z, Guo Z et al (2018) Influence of thermal treatment on the thermal conductivity of Beishan granite. Rock Mech Rock Eng 51(7):1–20
Zurück zum Zitat Zhu TT, Jing HW, Su HJ, Yin Q, Du MR, Han GS (2016) Physical and mechanical properties of sandstone containing a single fissure after exposure to high temperatures. Int J Min Sci Technol 26(2):319–325 Zhu TT, Jing HW, Su HJ, Yin Q, Du MR, Han GS (2016) Physical and mechanical properties of sandstone containing a single fissure after exposure to high temperatures. Int J Min Sci Technol 26(2):319–325
Metadaten
Titel
An Experimental Study of Effect of High Temperature on the Permeability Evolution and Failure Response of Granite Under Triaxial Compression
verfasst von
Sheng-Qi Yang
Wen-Ling Tian
Derek Elsworth
Jian-Guo Wang
Li-Feng Fan
Publikationsdatum
09.10.2019
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 10/2020
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-019-01982-7

Weitere Artikel der Ausgabe 10/2020

Rock Mechanics and Rock Engineering 10/2020 Zur Ausgabe