Skip to main content
Erschienen in: Finance and Stochastics 1/2017

15.09.2016

Hedging with small uncertainty aversion

verfasst von: Sebastian Herrmann, Johannes Muhle-Karbe, Frank Thomas Seifried

Erschienen in: Finance and Stochastics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the pricing and hedging of derivative securities with uncertainty about the volatility of the underlying asset. Rather than taking all models from a prespecified class equally seriously, we penalise less plausible ones based on their “distance” to a reference local volatility model. In the limit for small uncertainty aversion, this leads to explicit formulas for prices and hedging strategies in terms of the security’s cash gamma.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A related approach is Mykland’s “conservative delta hedging” [52, 53].
 
2
This terminology stems from the literature on robust control [33] and also from the robust representation of convex risk measures (see e.g. [25, Sect. 5.2]). Note that the penalty is not imposed on the agent, but on her fictitious adversary who minimises over \(P\). Hence, the penalty in (1.1) is added and not subtracted.
 
3
In view of the well-known deficiencies of local volatility models in capturing the dynamics of option prices (cf. e.g. [21, 30]) an extension to more general reference models is an important direction for future research; see Remark 2.7 for some further discussion.
 
4
A similar penalty has been used by [5] in the context of local volatility calibration with prior beliefs.
 
5
The term \(U'(Y_{t})\) in (1.2) renders the preferences invariant under affine transformations of the utility function; see also Remark 2.6.
 
6
Asymptotic analyses of option pricing and hedging problems with the worst-case approach have been carried out by [48, 2, 3, 26].
 
7
In Sect. 1, we only display the formulas for the special case of the penalty functional (1.2). Our analysis also applies to more general penalty functionals; cf. Sect. 2.3.
 
8
Our results can be formally linked to the UVM with a random, time-dependent volatility band depending on the option’s cash gamma and the agent’s uncertainty aversion; cf. Remark 3.7. Note that the cash gamma also plays a crucial role in the asymptotic analysis of other frictions such as discrete rebalancing [9], transaction costs [64], price impact [51], or jumps [13].
 
9
Specifically, the payoff is the Black–Scholes value of a standard put option with strike 100 and maturity 1 day.
 
10
As the option payoff is convex, this spread is simply the difference between the Black–Scholes values of the “smooth put” corresponding to the two endpoints of the volatility band.
 
11
Here and in the following, subscripts on functions denote the corresponding partial derivatives.
 
12
The strategy adjustment may become dependent on risk aversion for other penalty functionals; see the discussion following Theorem 3.4.
 
13
A rigorous verification of these results would proceed along the same lines as for the simpler benchmark case discussed here. In order not to drown the ideas in further technicalities resulting from even more state variables, regularity conditions, etc., we do not pursue this here.
 
14
Worst-case hedges for some exotics have been derived by [36, 12, 16, 15, 41, 40, 39, 62], for example.
 
15
This is the analogue of the Lagrangian uncertain volatility model [7]; also compare [54].
 
16
The same formula is obtained—mutatis mutandis—for exotics of Asian, lookback or barrier type, after adding the appropriate state variables to the reference cash gamma.
 
17
This error incurred from hedging with a misspecified volatility is well known in the literature and in practice. To the best of our knowledge, it appeared first in Lyons [48, Eq. (27)] (see also [47, Eq. (6.7)]).
 
18
Under each \(P\), the stochastic integrals of sufficiently integrable, progressively measurable integrands against Itô process integrators are constructed as \(\mathbb{F}\)-progressively measurable stochastic processes with \(P\)-a.s. continuous paths; see the discussion before Lemma 4.3.3 in Stroock and Varadhan [63].
 
19
Since \(\mathfrak{P}(\theta ,\sigma )\) may contain more than one measure, we also have to allow “nature” to choose a specific measure.
 
20
The penalty functional in the sense of the criterion (1.1) is \(\alpha (P) = E^{P} [ \mathfrak{a}(\sigma^{P}) ]\), where \(\sigma^{P}\) is the volatility of returns of \(S\) under \(P\).
 
21
Recall from footnote 2 that \(\mathfrak{a}\) penalises the fictitious adversary (“nature”) and not the agent.
 
22
Notably, [5] show that penalty functionals of this form can arise as the continuous-time limit of the relative entropy in a discrete-time approximation.
 
23
Using \(U'(y_{0})\) instead of \(U'(Y_{t})\) would yield the same expansion for \(v(\psi )\) as in Theorem 3.4 and, formally and at the leading order, the same almost optimal strategies and volatilities. This is because in the asymptotic limit for small uncertainty aversion, the P&L process converges to a constant.
 
24
In the context of robust portfolio choice, Maenhout [50] also observes that some modification of the standard (non wealth-dependent) entropic penalty is reasonable to avoid that the agent’s uncertainty aversion wears off as her wealth rises, and tackles this effect by directly modifying the HJBI equation.
 
25
Here, we assume that all relevant partial derivatives exist; precise conditions are given in Assumption 3.2.
 
26
Hölder-continuity uniformly on \((0,T)\times (K ^{-1},K)\) suffices for this step.
 
27
Strictly speaking, \(\theta^{\psi }\) and \(\sigma^{\psi }\) have to be defined for every \(\omega \in \varOmega \), even those for which \(S\) or \(Y\) exceeds the bounds (3.1). Outside these bounds, however, the functions \(\bar{V}_{s}\), \(\widetilde{\theta }\), \(\bar{\sigma }\), \(\widetilde{\sigma }\) are not defined. As we only consider measures \(P\) such that (3.1) holds, we do not make explicit the corresponding straightforward adjustments, which would only hamper readability.
 
28
Mutatis mutandis, the threshold 1 in the definition of the stopping time \(\tau \) can be replaced by any other constant. The same modification also appears in the asymptotic analysis of models with transaction costs [44].
 
29
A sufficient condition for \(\widetilde{w}_{sy} = 0\) is that \(f''(t,s,y;\varsigma )\) does not depend on \(y\).
 
30
A second-order expansion for the ask price can also be obtained, but does not offer much additional insight.
 
31
This symmetry generally breaks down for the second-order term \(\widehat{w}\); cf. the corresponding source term (3.5). Hence, for a second-order expansion of the indifference bid price, we have to use the \(\widehat{w}\) corresponding to the negative of the option.
 
32
This specification is a particular case of the general “random \(G\)-expectation” [56].
 
33
[48] imposes bounds on the instantaneous variance of prices instead of the volatility of returns. Hence, the PDE for \(\widetilde{V}\) there looks slightly different. The PDE presented here is a slight generalisation of the one derived in [26].
 
34
For example, if \(N\) is integrable under \(P^{\theta ,\sigma }\) for each \((\theta ,\sigma ) \in \mathcal{A} \times \mathcal{V}\), then \(v\) is a well-defined number in the extended real line \([-\infty ,+\infty ]\).
 
35
We obtain the same results if we interchange the order of the infimum and the supremum. In the language of two-player, zero-sum stochastic differential games, this indicates that the game “has a value”.
 
36
For the heuristic derivation in this section, we tacitly assume that for each \((\theta ,\sigma )\), \(P^{\theta ,\sigma }\) attains the infimum in (2.13), so that the additional infimum over measures in (2.13) disappears.
 
37
This covers most of the specific choices that are dealt with in the following subsections, except for additional state variables needed for some exotic options in Sect. 4.2. To explain the general procedure, we first focus here on the easiest case with just two state variables, the stock price \(S\) and the P&L process \(Y\).
 
38
Note that this hedge \(\bar{\varDelta }\) reflects the option’s sensitivity to price moves in the underlying both directly through \(S\) and indirectly through the additional state variable \(A\).
 
39
Portfolios including exotic options can be treated along the same lines; we do not pursue this here to ease notation.
 
40
That is, the local volatility model is calibrated to the observed market prices of the liquid options at time 0.
 
41
Portfolios of barrier options as in [4] or other exotics can be treated along the same lines, but require a more extensive notation.
 
42
For instance, if \(\theta \) is of finite variation, then the stochastic integral can be defined pathwise via the integration by parts formula.
 
43
Unlike [14], we disregard bid-ask spreads for the liquidly traded options.
 
44
A Mathematica file containing these calculations is available from the authors upon request.
 
Literatur
1.
Zurück zum Zitat Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance 26, 233–251 (2016) MathSciNetCrossRefMATH Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance 26, 233–251 (2016) MathSciNetCrossRefMATH
2.
Zurück zum Zitat Ahn, H., Muni, A., Swindle, G.: Misspecified asset price models and robust hedging strategies. Appl. Math. Finance 4, 21–36 (1997) CrossRefMATH Ahn, H., Muni, A., Swindle, G.: Misspecified asset price models and robust hedging strategies. Appl. Math. Finance 4, 21–36 (1997) CrossRefMATH
3.
Zurück zum Zitat Ahn, H., Muni, A., Swindle, G.: Optimal hedging strategies for misspecified asset price models. Appl. Math. Finance 6, 197–208 (1999) CrossRefMATH Ahn, H., Muni, A., Swindle, G.: Optimal hedging strategies for misspecified asset price models. Appl. Math. Finance 6, 197–208 (1999) CrossRefMATH
4.
Zurück zum Zitat Avellaneda, M., Buff, R.: Combinatorial implications of nonlinear uncertain volatility models: the case of barrier options. Appl. Math. Finance 6, 1–18 (1999) CrossRefMATH Avellaneda, M., Buff, R.: Combinatorial implications of nonlinear uncertain volatility models: the case of barrier options. Appl. Math. Finance 6, 1–18 (1999) CrossRefMATH
5.
Zurück zum Zitat Avellaneda, M., Friedman, C., Holmes, R., Samperi, D.: Calibrating volatility surfaces via relative-entropy minimization. Appl. Math. Finance 4, 37–64 (1997) CrossRefMATH Avellaneda, M., Friedman, C., Holmes, R., Samperi, D.: Calibrating volatility surfaces via relative-entropy minimization. Appl. Math. Finance 4, 37–64 (1997) CrossRefMATH
6.
Zurück zum Zitat Avellaneda, M., Levy, A., Parás, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2, 73–88 (1995) CrossRef Avellaneda, M., Levy, A., Parás, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2, 73–88 (1995) CrossRef
7.
Zurück zum Zitat Avellaneda, M., Parás, A.: Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model. Appl. Math. Finance 3, 21–52 (1996) CrossRefMATH Avellaneda, M., Parás, A.: Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model. Appl. Math. Finance 3, 21–52 (1996) CrossRefMATH
8.
Zurück zum Zitat Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices—a mass transport approach. Finance Stoch. 17, 477–501 (2013) MathSciNetCrossRefMATH Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices—a mass transport approach. Finance Stoch. 17, 477–501 (2013) MathSciNetCrossRefMATH
9.
Zurück zum Zitat Bertsimas, D., Kogan, L., Lo, A.: When is time continuous? J. Financ. Econ. 55, 173–204 (2000) CrossRefMATH Bertsimas, D., Kogan, L., Lo, A.: When is time continuous? J. Financ. Econ. 55, 173–204 (2000) CrossRefMATH
11.
14.
16.
17.
Zurück zum Zitat Davis, M.: Martingale methods in stochastic control. In: Kohlmann, M., Vogel, W. (eds.) Stochastic Control and Stochastic Differential Systems. Lecture Notes in Control and Information Sciences, vol. 16, pp. 85–117. Springer, Berlin (1979) CrossRef Davis, M.: Martingale methods in stochastic control. In: Kohlmann, M., Vogel, W. (eds.) Stochastic Control and Stochastic Differential Systems. Lecture Notes in Control and Information Sciences, vol. 16, pp. 85–117. Springer, Berlin (1979) CrossRef
18.
Zurück zum Zitat Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. Mathematics Studies, vol. 29. North-Holland, Amsterdam (1978) MATH Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. Mathematics Studies, vol. 29. North-Holland, Amsterdam (1978) MATH
19.
Zurück zum Zitat Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006) MathSciNetCrossRefMATH Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827–852 (2006) MathSciNetCrossRefMATH
20.
Zurück zum Zitat Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab. Theory Relat. Fields 160, 391–427 (2014) MathSciNetCrossRefMATH Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab. Theory Relat. Fields 160, 391–427 (2014) MathSciNetCrossRefMATH
21.
Zurück zum Zitat Dumas, B., Fleming, J., Whaley, R.: Implied volatility functions: empirical tests. J. Finance 53, 2059–2106 (1998) CrossRef Dumas, B., Fleming, J., Whaley, R.: Implied volatility functions: empirical tests. J. Finance 53, 2059–2106 (1998) CrossRef
22.
Zurück zum Zitat Dupire, B.: Pricing with a smile. Risk 7(1), 18–20 (1994) Dupire, B.: Pricing with a smile. Risk 7(1), 18–20 (1994)
23.
Zurück zum Zitat Fleming, W., Hernández-Hernández, D.: On the value of stochastic differential games. Commun. Stoch. Anal. 5, 341–351 (2011) MathSciNetMATH Fleming, W., Hernández-Hernández, D.: On the value of stochastic differential games. Commun. Stoch. Anal. 5, 341–351 (2011) MathSciNetMATH
24.
Zurück zum Zitat Fleming, W., Souganidis, P.: On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38, 293–314 (1989) MathSciNetCrossRefMATH Fleming, W., Souganidis, P.: On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38, 293–314 (1989) MathSciNetCrossRefMATH
26.
Zurück zum Zitat Fouque, J.-P., Ren, B.: Approximation for option prices under uncertain volatility. SIAM J. Financ. Math. 5, 260–383 (2014) MathSciNetCrossRefMATH Fouque, J.-P., Ren, B.: Approximation for option prices under uncertain volatility. SIAM J. Financ. Math. 5, 260–383 (2014) MathSciNetCrossRefMATH
27.
28.
Zurück zum Zitat Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964) MATH Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964) MATH
29.
Zurück zum Zitat Galichon, A., Henry-Labordère, P., Touzi, N.: A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24, 312–336 (2014) MathSciNetCrossRefMATH Galichon, A., Henry-Labordère, P., Touzi, N.: A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24, 312–336 (2014) MathSciNetCrossRefMATH
30.
Zurück zum Zitat Gatheral, J.: The Volatility Surface: A Practitioner’s Guide. Wiley, Hoboken (2006) Gatheral, J.: The Volatility Surface: A Practitioner’s Guide. Wiley, Hoboken (2006)
32.
Zurück zum Zitat Hansen, L., Sargent, T.: Robust control and model uncertainty. Am. Econ. Rev. 91(2), 60–66 (2001) CrossRef Hansen, L., Sargent, T.: Robust control and model uncertainty. Am. Econ. Rev. 91(2), 60–66 (2001) CrossRef
33.
Zurück zum Zitat Hansen, L., Sargent, T.: Robustness. Princeton Univ. Press, Princeton (2007) MATH Hansen, L., Sargent, T.: Robustness. Princeton Univ. Press, Princeton (2007) MATH
36.
Zurück zum Zitat Hobson, D.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998) CrossRefMATH Hobson, D.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998) CrossRefMATH
37.
Zurück zum Zitat Hobson, D.: Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Probab. 8, 193–205 (1998) MathSciNetCrossRefMATH Hobson, D.: Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Probab. 8, 193–205 (1998) MathSciNetCrossRefMATH
38.
Zurück zum Zitat Hobson, D.: The Skorokhod embedding problem and model-independent bounds for option prices. In: Carmona, R., et al. (eds.) Paris–Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Mathematics, vol. 2003, pp. 267–318. Springer, Berlin (2011) CrossRef Hobson, D.: The Skorokhod embedding problem and model-independent bounds for option prices. In: Carmona, R., et al. (eds.) Paris–Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Mathematics, vol. 2003, pp. 267–318. Springer, Berlin (2011) CrossRef
39.
40.
43.
45.
46.
Zurück zum Zitat Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1998) CrossRefMATH Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1998) CrossRefMATH
47.
Zurück zum Zitat El Karoui, N., Jeanblanc-Picqué, M., Shreve, S.: Robustness of the Black and Scholes formula. Math. Finance 8, 93–126 (1998) MathSciNetCrossRefMATH El Karoui, N., Jeanblanc-Picqué, M., Shreve, S.: Robustness of the Black and Scholes formula. Math. Finance 8, 93–126 (1998) MathSciNetCrossRefMATH
48.
Zurück zum Zitat Lyons, T.: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance 2, 117–133 (1995) CrossRef Lyons, T.: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance 2, 117–133 (1995) CrossRef
49.
Zurück zum Zitat Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006) MathSciNetCrossRefMATH Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006) MathSciNetCrossRefMATH
50.
Zurück zum Zitat Maenhout, P.: Robust portfolio rules and asset pricing. Rev. Financ. Stud. 17, 951–983 (2004) CrossRef Maenhout, P.: Robust portfolio rules and asset pricing. Rev. Financ. Stud. 17, 951–983 (2004) CrossRef
55.
Zurück zum Zitat Neufeld, A., Nutz, M.: Superreplication under volatility uncertainty for measurable claims. Electron. J. Probab. 18, 1–14 (2013) MathSciNetCrossRefMATH Neufeld, A., Nutz, M.: Superreplication under volatility uncertainty for measurable claims. Electron. J. Probab. 18, 1–14 (2013) MathSciNetCrossRefMATH
58.
Zurück zum Zitat Pham, T., Zhang, J.: Two person zero-sum game in weak formulation and path dependent Bellman–Isaacs equation. SIAM J. Control Optim. 52, 2090–2121 (2014) MathSciNetCrossRefMATH Pham, T., Zhang, J.: Two person zero-sum game in weak formulation and path dependent Bellman–Isaacs equation. SIAM J. Control Optim. 52, 2090–2121 (2014) MathSciNetCrossRefMATH
59.
Zurück zum Zitat Possamaï, D., Royer, G., Touzi, N.: On the robust superhedging of measurable claims. Electron. Commun. Probab. 18(95), 1–13 (2013) MathSciNetMATH Possamaï, D., Royer, G., Touzi, N.: On the robust superhedging of measurable claims. Electron. Commun. Probab. 18(95), 1–13 (2013) MathSciNetMATH
60.
Zurück zum Zitat Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, vol. 2: Itô Calculus, 2nd edn. Cambridge Univ. Press, Cambridge (2000) CrossRefMATH Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, vol. 2: Itô Calculus, 2nd edn. Cambridge Univ. Press, Cambridge (2000) CrossRefMATH
61.
Zurück zum Zitat Seifried, F.: Optimal investment for worst-case crash scenarios: a martingale approach. Math. Oper. Res. 35, 559–579 (2010) MathSciNetCrossRefMATH Seifried, F.: Optimal investment for worst-case crash scenarios: a martingale approach. Math. Oper. Res. 35, 559–579 (2010) MathSciNetCrossRefMATH
63.
Zurück zum Zitat Stroock, D., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979) MATH Stroock, D., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979) MATH
64.
Zurück zum Zitat Whalley, A., Wilmott, P.: An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Math. Finance 7, 307–324 (1997) MathSciNetCrossRefMATH Whalley, A., Wilmott, P.: An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Math. Finance 7, 307–324 (1997) MathSciNetCrossRefMATH
Metadaten
Titel
Hedging with small uncertainty aversion
verfasst von
Sebastian Herrmann
Johannes Muhle-Karbe
Frank Thomas Seifried
Publikationsdatum
15.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Finance and Stochastics / Ausgabe 1/2017
Print ISSN: 0949-2984
Elektronische ISSN: 1432-1122
DOI
https://doi.org/10.1007/s00780-016-0309-z

Weitere Artikel der Ausgabe 1/2017

Finance and Stochastics 1/2017 Zur Ausgabe

OriginalPaper

Watermark options