Skip to main content
Erschienen in: Bulletin of Engineering Geology and the Environment 4/2016

01.11.2016 | Original Paper

Rock toppling failure mode influenced by local response to earthquakes

verfasst von: Zelin Zhang, Tao Wang, Shuren Wu, Huiming Tang

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Earthquake waves influence rock toppling stability, and the effects of local earthquake propagation and topographic also affect slope deformation. Detailed engineering geology conditions of slopes are obtained and a geomechanical characterization of rock topplings is performed. To study the input earthquake waves and slope interactions, a dynamic analysis is performed using the UDEC 4.0 discrete element method (DEM) numerical code under viscoplastic conditions. The earthquake signals are representative of different peak ground acceleration, Arias intensities, and frequencies, and are used in the study of different rock topplings with different height, slope angle, and strata dip angle. The derived outputs are processed for the earthquake propagation study and to assess the induced deformation mechanisms in terms of resulting displacements, plastic zone features, and deformation mode. The results prove that an interaction exists between stratigraphic and topographic effects on earthquake wave propagation, and that these effects cannot be assessed independently. The obtained results describe the effect of topography and geological settings in rock topplings, amplifying or de-amplifying earthquake ground motion, and demonstrate that the tensile state dominates at the slope surface but evolves with depth. A shear state dominates at the toe or in the deep part of rock topplings. The rock toppling deformation mode may develop into a composite of tension fractures at the crest and sliding at depth. Compared with the static scenario, under earthquake load, tensile deformation evolves over a larger area at the crest and develops a shear zone at the toe and in the substrata. The necessary earthquake-induced toppling conditions are discussed, and the UDEC 4.0 DEM method and conventional pseudostatic approach are compared. This study shows there are a broader range of deformations inside the slope.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alzo’ubi AK, Martin CD, Cruden DM (2010) Influence of tensile strength on toppling failure in centrifuge tests. Int J Rock Mech Min Sci 47:974–982CrossRef Alzo’ubi AK, Martin CD, Cruden DM (2010) Influence of tensile strength on toppling failure in centrifuge tests. Int J Rock Mech Min Sci 47:974–982CrossRef
Zurück zum Zitat Ashford SA, Sitar N, Lysmer J, Deng N (1997) Topographic effects on the earthquake response of steep slopes. Bull Seismol Soc Am 87:701–709 Ashford SA, Sitar N, Lysmer J, Deng N (1997) Topographic effects on the earthquake response of steep slopes. Bull Seismol Soc Am 87:701–709
Zurück zum Zitat Babiker AFA, Smith CC, Gilbert M, Ashby JP (2014) Non-associative limit analysis of the toppling-sliding failure of rock slopes. Int J Rock Mech Min Sci 71:1–11 Babiker AFA, Smith CC, Gilbert M, Ashby JP (2014) Non-associative limit analysis of the toppling-sliding failure of rock slopes. Int J Rock Mech Min Sci 71:1–11
Zurück zum Zitat Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179CrossRef Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179CrossRef
Zurück zum Zitat Bobet A (1999) Analytical solutions for toppling failure. Int J Rock Mech Min Sci 36(7):971–980CrossRef Bobet A (1999) Analytical solutions for toppling failure. Int J Rock Mech Min Sci 36(7):971–980CrossRef
Zurück zum Zitat Bouckovalas GD, Papadimitriou AG (2005) Numerical evaluation of slope topography effects on earthquake ground motion. Soil Dyn Earthq Eng 25(7):547–558CrossRef Bouckovalas GD, Papadimitriou AG (2005) Numerical evaluation of slope topography effects on earthquake ground motion. Soil Dyn Earthq Eng 25(7):547–558CrossRef
Zurück zum Zitat Bozzano F, Lenti L, Martino S, Montagna A, Paciello A (2011) Earthquake triggering of landslides in highly jointed rock masses: reconstruction of the 1783 Scilla rock avalanche (Italy). Geomorphology 129:294–308CrossRef Bozzano F, Lenti L, Martino S, Montagna A, Paciello A (2011) Earthquake triggering of landslides in highly jointed rock masses: reconstruction of the 1783 Scilla rock avalanche (Italy). Geomorphology 129:294–308CrossRef
Zurück zum Zitat Bray JD, Rathje EM, Member ASCE (1998) Earthquake induced displacements of solid waste landfills. J Geotech Geoenviron Eng 124:242–253CrossRef Bray JD, Rathje EM, Member ASCE (1998) Earthquake induced displacements of solid waste landfills. J Geotech Geoenviron Eng 124:242–253CrossRef
Zurück zum Zitat Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118:225–238CrossRef Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118:225–238CrossRef
Zurück zum Zitat Goodman RE, Bray JW (1976) Toppling of rock slopes. In: Proceedings of the specialty conference on rock engineering for foundations and slopes, vol 2. American Society of Civil Engineering, Boulder, CO. pp 739–760 Goodman RE, Bray JW (1976) Toppling of rock slopes. In: Proceedings of the specialty conference on rock engineering for foundations and slopes, vol 2. American Society of Civil Engineering, Boulder, CO. pp 739–760
Zurück zum Zitat Huang R, Zhao J, Nengpan J, Li G, Lee ML, Li Y (2013) Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China. Nat Hazards 68:1021–1039CrossRef Huang R, Zhao J, Nengpan J, Li G, Lee ML, Li Y (2013) Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China. Nat Hazards 68:1021–1039CrossRef
Zurück zum Zitat Itasca (2004) UDEC-Universal Distinct Element Code (Version 4.0). Itasca Consulting Group, Minneapolis Itasca (2004) UDEC-Universal Distinct Element Code (Version 4.0). Itasca Consulting Group, Minneapolis
Zurück zum Zitat Jiao Y-Y, Tian H-N, Wu H-Z, Li H-B, Tang H-M (2014) Numerical and experimental investigation on the stability of slopes threatened by earthquakes. Arab J Geosci. doi:10.1007/s12517-014-1509-5 Jiao Y-Y, Tian H-N, Wu H-Z, Li H-B, Tang H-M (2014) Numerical and experimental investigation on the stability of slopes threatened by earthquakes. Arab J Geosci. doi:10.​1007/​s12517-014-1509-5
Zurück zum Zitat Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17 Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17
Zurück zum Zitat Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91:209–218CrossRef Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91:209–218CrossRef
Zurück zum Zitat Kokusho T, Koyanagi T, Yamada T (2014) Energy approach to earthquakeally induced slope failure and its application to case histories supplement. Eng Geol 181:290–296CrossRef Kokusho T, Koyanagi T, Yamada T (2014) Energy approach to earthquakeally induced slope failure and its application to case histories supplement. Eng Geol 181:290–296CrossRef
Zurück zum Zitat Kuhlemeyer RL, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mech Found Div ASCE 99(SM5):421–427 Kuhlemeyer RL, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mech Found Div ASCE 99(SM5):421–427
Zurück zum Zitat Lenti L, Martino S (2012) The interaction of earthquake waves with step-like slopes and its influence on landslide movements. Eng Geol 126:19–36CrossRef Lenti L, Martino S (2012) The interaction of earthquake waves with step-like slopes and its influence on landslide movements. Eng Geol 126:19–36CrossRef
Zurück zum Zitat Lenti L, Martino S (2013) A parametric numerical study of the interaction between seismic waves and landslides for the evaluation of the susceptibility to seismically induced displacements. BSSA 103(1):33–56 Lenti L, Martino S (2013) A parametric numerical study of the interaction between seismic waves and landslides for the evaluation of the susceptibility to seismically induced displacements. BSSA 103(1):33–56
Zurück zum Zitat Liu CH, Jaksa MB, Meyers AG (2008) Improved analytical solution for toppling stability analysis of rock slopes. Int J Rock Mech Min Sci 45(8):1361–1372CrossRef Liu CH, Jaksa MB, Meyers AG (2008) Improved analytical solution for toppling stability analysis of rock slopes. Int J Rock Mech Min Sci 45(8):1361–1372CrossRef
Zurück zum Zitat Martino S, Mugnozza GS (2005) The role of the earthquake trigger in the Calitri landslide (Italy): historical reconstruction and dynamic analysis. Soil Dyn Earthq Eng 25:933–950CrossRef Martino S, Mugnozza GS (2005) The role of the earthquake trigger in the Calitri landslide (Italy): historical reconstruction and dynamic analysis. Soil Dyn Earthq Eng 25:933–950CrossRef
Zurück zum Zitat Mohtaramin E, Jafari A, Amini M (2014) Stability analysis of slopes against combined circular-toppling failure. Int J Rock Mech Min Sci 67:43–56 Mohtaramin E, Jafari A, Amini M (2014) Stability analysis of slopes against combined circular-toppling failure. Int J Rock Mech Min Sci 67:43–56
Zurück zum Zitat Nichol SL, Hungr O, Evans SG (2002) Large-scale brittle and ductile toppling of rock slopes. Can Geotech J 39(4):773–788CrossRef Nichol SL, Hungr O, Evans SG (2002) Large-scale brittle and ductile toppling of rock slopes. Can Geotech J 39(4):773–788CrossRef
Zurück zum Zitat Pal S, Kaynia AM, Bhasin RK, Paul DK (2012) Earthquake stability analysis of rock slopes: a case study. Rock Mech Rock Eng 45:205–215CrossRef Pal S, Kaynia AM, Bhasin RK, Paul DK (2012) Earthquake stability analysis of rock slopes: a case study. Rock Mech Rock Eng 45:205–215CrossRef
Zurück zum Zitat Pritchard MA, Savigny KW (1990) Numerical modelling of toppling. Can Geotech J 27:823–834CrossRef Pritchard MA, Savigny KW (1990) Numerical modelling of toppling. Can Geotech J 27:823–834CrossRef
Zurück zum Zitat Rathje EM, Bray JD (2000) Nonlinear coupled seismic sliding analysis of earth structures. J Geotech Geoenviron Eng 126:1002–1014CrossRef Rathje EM, Bray JD (2000) Nonlinear coupled seismic sliding analysis of earth structures. J Geotech Geoenviron Eng 126:1002–1014CrossRef
Zurück zum Zitat Rizzitano S, Cascone E, Biondi G (2014) Coupling of topographic and stratigraphic effects on earthquake response of slopes through 2D linear and equivalent linear analysis. Soil Dyn Earthq Eng 67:66–84CrossRef Rizzitano S, Cascone E, Biondi G (2014) Coupling of topographic and stratigraphic effects on earthquake response of slopes through 2D linear and equivalent linear analysis. Soil Dyn Earthq Eng 67:66–84CrossRef
Zurück zum Zitat Romeo R (2000) Seismically induced landslide displacements: a predictive model. Eng Geol 58(3/4):337–351CrossRef Romeo R (2000) Seismically induced landslide displacements: a predictive model. Eng Geol 58(3/4):337–351CrossRef
Zurück zum Zitat Sagaseta C, Sánchez JM, Cañizal J (2001) A general analytical solution for the required anchor force in rock slopes with toppling failure. Int J Rock Mech Min Sci 38(3):421–435CrossRef Sagaseta C, Sánchez JM, Cañizal J (2001) A general analytical solution for the required anchor force in rock slopes with toppling failure. Int J Rock Mech Min Sci 38(3):421–435CrossRef
Zurück zum Zitat Saygili G, Rathje EM (2008) Empirical predictive models for earthquake-induced sliding displacements of slopes. J Geotech Geoenviron Eng ASCE 134(6):790–803CrossRef Saygili G, Rathje EM (2008) Empirical predictive models for earthquake-induced sliding displacements of slopes. J Geotech Geoenviron Eng ASCE 134(6):790–803CrossRef
Zurück zum Zitat Scholtès L, Donzé F-V (2012) Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int J Rock Mech Min Sci 52:18–30CrossRef Scholtès L, Donzé F-V (2012) Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int J Rock Mech Min Sci 52:18–30CrossRef
Zurück zum Zitat Wasowski J, Del Gaudio V (2000) Evaluating earthquakeally induced mass movement hazard in Caramanico Terme (Italy). Eng Geol 58:291–311CrossRef Wasowski J, Del Gaudio V (2000) Evaluating earthquakeally induced mass movement hazard in Caramanico Terme (Italy). Eng Geol 58:291–311CrossRef
Zurück zum Zitat Yagoda Biran G, Hatzor YH (2013) A new failure mode chart for toppling and sliding with consideration of earthquake inertia force. Int J Rock Mech Min Sci 64:122–131 Yagoda Biran G, Hatzor YH (2013) A new failure mode chart for toppling and sliding with consideration of earthquake inertia force. Int J Rock Mech Min Sci 64:122–131
Zurück zum Zitat Zhang Z, Liu G, Wu S, Tang H, Wang T, Li G, Liang C (2015) Rock slope deformation mechanism in the Cihaxia Hydropower Station, Northwest China. Bull Eng Geol Environ 74:943–958CrossRef Zhang Z, Liu G, Wu S, Tang H, Wang T, Li G, Liang C (2015) Rock slope deformation mechanism in the Cihaxia Hydropower Station, Northwest China. Bull Eng Geol Environ 74:943–958CrossRef
Metadaten
Titel
Rock toppling failure mode influenced by local response to earthquakes
verfasst von
Zelin Zhang
Tao Wang
Shuren Wu
Huiming Tang
Publikationsdatum
01.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 4/2016
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-015-0806-x

Weitere Artikel der Ausgabe 4/2016

Bulletin of Engineering Geology and the Environment 4/2016 Zur Ausgabe