Skip to main content
Erschienen in: Knowledge and Information Systems 1/2022

19.01.2022 | Regular Paper

Scalable self-supervised graph representation learning via enhancing and contrasting subgraphs

verfasst von: Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, Yangyong Zhu

Erschienen in: Knowledge and Information Systems | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph representation learning has attracted lots of attention recently. Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs. Thus, it remains a great challenge to capture rich information in large-scale graph data. Besides, these methods mainly focus on supervised learning and highly depend on node label information, which is expensive to obtain in the real world. As to unsupervised network embedding approaches, they overemphasize node proximity instead, whose learned representations can hardly be used in downstream application tasks directly. In recent years, emerging self-supervised learning provides a potential solution to address the aforementioned problems. However, existing self-supervised works also operate on the complete graph data and are biased to fit either global or very local (1-hop neighborhood) graph structures in defining the mutual information-based loss terms. In this paper, a novel self-supervised representation learning method via Sub-graph Contrast, namely Subg-Con, is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information. Instead of learning on the complete input graph data, with a novel data augmentation strategy, Subg-Con learns node representations through a contrastive loss defined based on subgraphs sampled from the original graph instead. Besides, we further enhance the subgraph representation learning via mutual information maximum to preserve more topology and feature information. Compared with existing graph representation learning approaches, Subg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization. Extensive experiments verify both the effectiveness and the efficiency of our work. We compared it with both classic and state-of-the-art graph representation learning approaches. Various downstream tasks are done on multiple real-world large-scale benchmark datasets from different domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abu-El-Haija S, Perozzi B, Kapoor A, Alipourfard N, Lerman K, Harutyunyan H, Steeg GV, Galstyan A (2019) Mixhop: higher-order graph convolutional architectures via sparsified neighborhood mixing. arXiv preprint arXiv:1905.00067 Abu-El-Haija S, Perozzi B, Kapoor A, Alipourfard N, Lerman K, Harutyunyan H, Steeg GV, Galstyan A (2019) Mixhop: higher-order graph convolutional architectures via sparsified neighborhood mixing. arXiv preprint arXiv:​1905.​00067
2.
Zurück zum Zitat Asano YM, Rupprecht C, Vedaldi A (2019) A critical analysis of self-supervision, or what we can learn from a single image. arXiv preprint arXiv:1904.13132 Asano YM, Rupprecht C, Vedaldi A (2019) A critical analysis of self-supervision, or what we can learn from a single image. arXiv preprint arXiv:​1904.​13132
3.
Zurück zum Zitat Chen J, Ma T, Xiao C (2018) Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 Chen J, Ma T, Xiao C (2018) Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:​1801.​10247
4.
Zurück zum Zitat Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:​2002.​05709
5.
Zurück zum Zitat Dupont P, Callut J, Dooms G, Monette JN, Deville Y, Sainte B (2006) Relevant subgraph extraction from random walks in a graph. Universite Catholique de Louvain, UCL/INGI, Number RR, p 7 Dupont P, Callut J, Dooms G, Monette JN, Deville Y, Sainte B (2006) Relevant subgraph extraction from random walks in a graph. Universite Catholique de Louvain, UCL/INGI, Number RR, p 7
6.
Zurück zum Zitat Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch geometric. In: ICLR workshop on representation learning on graphs and manifolds Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch geometric. In: ICLR workshop on representation learning on graphs and manifolds
7.
Zurück zum Zitat Gidaris S, Singh P, Komodakis N (2018) Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 Gidaris S, Singh P, Komodakis N (2018) Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:​1803.​07728
8.
Zurück zum Zitat Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 855–864 Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 855–864
9.
Zurück zum Zitat Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024–1034 Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024–1034
10.
Zurück zum Zitat Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. arXiv preprint arXiv:​1709.​05584
11.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
12.
Zurück zum Zitat Jeh G, Widom J (2003) Scaling personalized web search. In: Proceedings of the 12th international conference on World Wide Web, pp 271–279 Jeh G, Widom J (2003) Scaling personalized web search. In: Proceedings of the 12th international conference on World Wide Web, pp 271–279
13.
Zurück zum Zitat Jiao Y, Xiong Y, Zhang J, Zhu Y (2019) Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM international conference on information and knowledge management, pp 419–428 Jiao Y, Xiong Y, Zhang J, Zhu Y (2019) Collective link prediction oriented network embedding with hierarchical graph attention. In: Proceedings of the 28th ACM international conference on information and knowledge management, pp 419–428
14.
Zurück zum Zitat Jing L, Tian Y (2020) Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans Pattern Anal Mach Intell Jing L, Tian Y (2020) Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans Pattern Anal Mach Intell
15.
Zurück zum Zitat Ketkar N (2017) Introduction to pytorch. In: Deep learning with python. Springer, pp 195–208 Ketkar N (2017) Introduction to pytorch. In: Deep learning with python. Springer, pp 195–208
17.
20.
Zurück zum Zitat Liao R, Zhao Z, Urtasun R, Zemel RS (2019) Lanczosnet: multi-scale deep graph convolutional networks. arXiv preprint arXiv:1901.01484 Liao R, Zhao Z, Urtasun R, Zemel RS (2019) Lanczosnet: multi-scale deep graph convolutional networks. arXiv preprint arXiv:​1901.​01484
21.
Zurück zum Zitat Meng L, Yang Bai J, Zhang J (2019) Latte: application oriented social network embedding. In: 2019 IEEE international conference on big data (Big Data), pp 1169–1174 Meng L, Yang Bai J, Zhang J (2019) Latte: application oriented social network embedding. In: 2019 IEEE international conference on big data (Big Data), pp 1169–1174
22.
Zurück zum Zitat Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:​1301.​3781
23.
Zurück zum Zitat Peng Z, Huang W, Luo M, Zheng Q, Rong Y, Xu T, Huang J (2020) Graph representation learning via graphical mutual information maximization. In: Proceedings of the web conference, pp 259–270 Peng Z, Huang W, Luo M, Zheng Q, Rong Y, Xu T, Huang J (2020) Graph representation learning via graphical mutual information maximization. In: Proceedings of the web conference, pp 259–270
24.
Zurück zum Zitat Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 701–710 Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 701–710
25.
Zurück zum Zitat Qu M, Bengio Y, Tang J (2019) Gmnn: graph markov neural networks. In: International conference on machine learning, pp 5241–5250 Qu M, Bengio Y, Tang J (2019) Gmnn: graph markov neural networks. In: International conference on machine learning, pp 5241–5250
26.
Zurück zum Zitat Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2012) Bpr: bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2012) Bpr: bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:​1205.​2618
27.
Zurück zum Zitat Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823 Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823
28.
Zurück zum Zitat Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60CrossRef
29.
Zurück zum Zitat Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web, pp 1067–1077 Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web, pp 1067–1077
30.
31.
32.
Zurück zum Zitat Wang S, He L, Cao B, Lu CT, Yu PS, Ragin AB (2017) Structural deep brain network mining. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 475–484 Wang S, He L, Cao B, Lu CT, Yu PS, Ragin AB (2017) Structural deep brain network mining. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 475–484
33.
Zurück zum Zitat Wu F, Souza Jr AH, Zhang T, Fifty C, Yu T, Weinberger KQ (2019) Simplifying graph convolutional networks. In: ICML Wu F, Souza Jr AH, Zhang T, Fifty C, Yu T, Weinberger KQ (2019) Simplifying graph convolutional networks. In: ICML
35.
Zurück zum Zitat Yizhu J, Yun X, Jiawei Z, Yao Z, Tianqi Z, Yangyong Z (2020) Sub-graph contrast for scalable self-supervised graph representation learning. In: 2020 IEEE international conference on data mining (ICDM). IEEE Yizhu J, Yun X, Jiawei Z, Yao Z, Tianqi Z, Yangyong Z (2020) Sub-graph contrast for scalable self-supervised graph representation learning. In: 2020 IEEE international conference on data mining (ICDM). IEEE
36.
Zurück zum Zitat Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V (2019) Graphsaint: graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931 Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V (2019) Graphsaint: graph sampling based inductive learning method. arXiv preprint arXiv:​1907.​04931
37.
Zurück zum Zitat Zhang J, Meng L (2019) Gresnet: graph residual network for reviving deep gnns from suspended animation. arXiv abs/1909.05729 Zhang J, Meng L (2019) Gresnet: graph residual network for reviving deep gnns from suspended animation. arXiv abs/1909.05729
38.
Zurück zum Zitat Zhang J, Zhang H, Sun L, Xia C (2020) Graph-bert: only attention is needed for learning graph representations. arXiv preprint arXiv:2001.05140 Zhang J, Zhang H, Sun L, Xia C (2020) Graph-bert: only attention is needed for learning graph representations. arXiv preprint arXiv:​2001.​05140
Metadaten
Titel
Scalable self-supervised graph representation learning via enhancing and contrasting subgraphs
verfasst von
Yizhu Jiao
Yun Xiong
Jiawei Zhang
Yao Zhang
Tianqi Zhang
Yangyong Zhu
Publikationsdatum
19.01.2022
Verlag
Springer London
Erschienen in
Knowledge and Information Systems / Ausgabe 1/2022
Print ISSN: 0219-1377
Elektronische ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-021-01635-8

Weitere Artikel der Ausgabe 1/2022

Knowledge and Information Systems 1/2022 Zur Ausgabe

Premium Partner