Skip to main content
Erschienen in: Foundations of Computational Mathematics 6/2015

01.12.2015

Propagation of 1D Waves in Regular Discrete Heterogeneous Media: A Wigner Measure Approach

verfasst von: Aurora Marica, Enrique Zuazua

Erschienen in: Foundations of Computational Mathematics | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we describe the propagation properties of the one-dimensional wave and transport equations with variable coefficients semi-discretized in space by finite difference schemes on non-uniform meshes obtained as diffeomorphic transformations of uniform ones. In particular, we introduce and give a rigorous meaning to notions like the principal symbol of the discrete wave operator and the corresponding bi-characteristic rays. The main mathematical tool we employ is the discrete Wigner transform, which, in the limit as the mesh size parameter tends to zero, yields the so-called Wigner (semiclassical) measure. This measure provides the dynamics of the bi-characteristic rays, i.e., the solutions of the Hamiltonian system describing the propagation, in both physical and Fourier spaces, of the energy of the solution to the wave equation. We show that, due to dispersion phenomena, the high-frequency numerical dynamics does not coincide with the continuous one. Our analysis holds for the class \(C^{0,1}(\mathbb {R})\) of globally Lipschitz coefficients and non-uniform grids obtained by means of \(C^{1,1}(\mathbb {R})\)-diffeomorphic transformations of a uniform one. We also present several numerical simulations that confirm the predicted paths of the space–time projections of the bi-characteristic rays. Based on the theoretical analysis and simulations, we describe some of the pathological phenomena that these rays might exhibit as, for example, their reflection before touching the boundary of the space domain. This leads, in particular, to the failure of the classical properties of boundary observability of continuous waves, arising in control and inverse problems theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
  1. L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158(2004), 227–260.MATHMathSciNetView Article
  2. L. Ambrosio, A. Figalli, G. Friesecke, J. Giannoulis and T. Paul, Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data, Comm. Pure Appl. Math., 64(9)(2011), 1199–1242.MATHMathSciNetView Article
  3. V. M. Babič and V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Translated from the 1972 Russian original by E. F. Kuester, Springer Series on Wave Phenomena, 4, Springer-Verlag, Berlin, 1991.
  4. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves form the boundary, SIAM J. Control and Optimization, 30(1992), 1024–1065.MATHMathSciNetView Article
  5. B. Beckermann and S. Serra-Capizzano, On the asymptotic spectrum of finite element matrix sequences, SIAM J. Numer. Anal., 45(2)(2007), 746–769.MATHMathSciNetView Article
  6. F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal., 157(2001), 75–90.MATHMathSciNetView Article
  7. O. Bühler, A brief introduction to classical, statistical and quantum mechanics, Cournat Lecture Notes, Vol. 13, AMS, 2006.
  8. N. Burq, Contrôlabilité exacte de léquation des ondes dans des ouverts peu réguliers, Asymptot. Anal., 14(1997), 157–191.MATHMathSciNet
  9. C. Castro and E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media, Arch. Rat. Mech. Anal., 164(1)(2002), 39–72.MATHMathSciNetView Article
  10. N. Champagnat and P.-E. Jabin, Well posedness in any dimension for Hamiltonian flows with non BV force terms, Comm. Partial Differential Equations, 35(2010), 786–816.MATHMathSciNetView Article
  11. G. Cohen, Higher-order numerical methods for transient wave equations, Springer, 2001.
  12. S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end, Indiana Univ. Math. Journal, 44(2)(1995), 545–573.MATHMathSciNetView Article
  13. R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98(1998), 511–547.MathSciNetView Article
  14. S. Ervedoza, On the mixed finite element method for the 1-d wave equation on non-uniform meshes, ESAIM:COCV, 2(2010), 298–326.MathSciNetView Article
  15. S. Ervedoza, Spectral conditions for admissibility and observability of wave systems, Numer. Math., 113(3)(2009), 377–415.MATHMathSciNetView Article
  16. S. Ervedoza and E. Zuazua, The wave equation: control and numerics, in Control and stabilization of PDEs, P. M. Cannarsa and J. M. Coron eds., Lecture Notes in Mathematics 2048, CIME Subseries, Springer Verlag, 2012, 245–340.
  17. S. Ervedoza and E. Zuazua, On the numerical approximation of exact controls for waves, Springer Briefs in Mathematics, XVII, 2013, ISBN 978-1-4614-5808-1.
  18. L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, AMS, 2000.
  19. F. Fanelli and E. Zuazua, Weak observability estimates for 1-d wave equations with rough coeffcients, Ann. Inst. H. Poincaré, Anal. Non Linéaire, to appear. doi:10.​1016/​j.​anihpc.​2013.​10.​004
  20. X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, SIAM J. Control Optim., 46(5)(2007), 1578–1614.MATHMathSciNetView Article
  21. P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal., 141(1996), 60–98.MATHMathSciNetView Article
  22. P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Communications on Pure and Applied Mahematics, L(1997), 323–379.
  23. S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations, 32(12)(2007), 1813–1836.MATHMathSciNetView Article
  24. M. Hauray, On Liouville transport equation with force field with \(BV_{loc}\), Comm. Partial Differential Equations, 29(1-2)(2004), 207–217.MATHMathSciNet
  25. M. Hauray, On two-dimensional Hamiltonian transport equations with \(L^p_{loc}\) -coefficients, Ann. Inst. H. Poincaré, Anal. Non Linéaire 20, 4(2003), 625–644.
  26. D. W. Jordan and P. Smith, Nonlinear ordinary differential equations. An introduction for scientists and engineers, Fourth edition, Oxford University Press, 2007.MATH
  27. J. B. Keller, G. Papanicolaou and L. Ryzhik, Transport equations for elastic and other waves in random media, Wave Motion, 24(1996), 327–370.MATHMathSciNetView Article
  28. C. Kittel, Introduction to Solid State Physics, Eight Edition, John Wiley & Sons, 2005.
  29. P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math., 9(1956), 267–293.
  30. C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with partially \(W^{1,1}\) velocities and applications, Annali di Matematica, 183(2004), 97–130.MATHView Article
  31. N. Lerner, Transport equations with partially BV velocities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3(4)(2004), 681–703.
  32. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués, vol. 1, Masson, Paris, 1988.
  33. P.-L. Lions and T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9(3)(1993), 553–618.MATHMathSciNetView Article
  34. F. Macìa, Propagación y control de vibraciones en medios discretos y continuos, PhD. Thesis, Universidad Complutense de Madrid, 2002.
  35. F. Macìa, Wigner measures in the discrete setting: high frequency analysis of sampling and reconstruction operators, SIAM J. Math. Anal., 36(2)(2004), 347–383.MATHMathSciNetView Article
  36. F. Macìa and E. Zuazua, On the lack of observability for wave equations: a Gaussian beam approach, Asymptotic Anal., 32(1)(2002), 1–26.MATH
  37. A. Marica and E. Zuazua, Boundary stabilization of numerical approximations of the 1-d variable coefficients wave equation: A numerical viscosity approach, Optimization with PDE Constraints. ESF Networking Program OPTPDE (ed. R. Hoppe), Lecture Notes in Computational Science and Engineering, vol. 101, 2014, Springer International Publishing, pp. 285–324.
  38. P. A. Markowich, P. Pietra and C. Pohl, Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit, Numer. Math., 81(1999), 595–630.MATHMathSciNetView Article
  39. P. A. Markowich and F. Poupaud, The pseudo-differential approach to finite difference revisited, Calcolo, Springer-Verlag, 36(1999), 161–186.MATHMathSciNet
  40. L. Miller, Escape function conditions for the observation, control, and stabilization of the wave equation, SIAM J. Cont. Optim., 41(5)(2003), 1554–1566.MATHView Article
  41. J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22(1969), 807–823.MATHMathSciNetView Article
  42. J. V. Ralston, Gaussian beams and the propagation of singularities, Studies in partial differential equations, MAA Stud. Math., 23, Math. Assoc. America, Washington, DC, 1982, 206–248.
  43. J. Rebaza, A first course in applied mathematics, Wiley, 2012.MATHView Article
  44. S. Serra-Capizzano and C. Tablino Possio, Analysis of preconditioning strategies for collocation linear systems, Linear Algebra and its Applications, 369(2003), 41–75.MATHMathSciNetView Article
  45. S. H. Strogatz, Nonlinear dynamics and chaos with applications to Physics, Biology, Chemistry and Engineering, Studies in nonlinearity, Perseus Books Publishing, 1994.
  46. P. Tilli, Locally Toeplitz sequences: spectral properties and applications, Linear Algebra and its Applications, 278(1998), 91–120.MATHMathSciNetView Article
  47. L. N. Trefethen, Group Velocity in Finite Difference Schemes, SIAM Review, 24(2)(1982), 113–136.MATHMathSciNetView Article
  48. R. Vichnevetsky, Wave propagation and reflection in irregular grids for hyperbolic equations, Applied Numerical Mathematics, North-Holland, 3(1987), 133–166.MATHMathSciNetView Article
  49. G. B. Whitham, Linear and nonlinear waves, John Wiley & Sons, Inc., 1974.MATH
  50. E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40(1932), 749–759.View Article
  51. E. Zuazua, Propagation, observation, control and numerical approximation of waves, SIAM Review, 47(2)(2005), 197–243.MATHMathSciNetView Article
Metadaten
Titel
Propagation of 1D Waves in Regular Discrete Heterogeneous Media: A Wigner Measure Approach
verfasst von
Aurora Marica
Enrique Zuazua
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 6/2015
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-014-9232-x

Weitere Artikel der Ausgabe 6/2015

Foundations of Computational Mathematics 6/2015 Zur Ausgabe

Premium Partner