Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2017

28.04.2017 | Review Paper

Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

verfasst von: Ao Xu, Wei Shyy, Tianshou Zhao

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas–liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)MathSciNetCrossRef Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)MathSciNetCrossRef
3.
Zurück zum Zitat Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)MATHCrossRef Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)MATHCrossRef
4.
Zurück zum Zitat Guo, Z., Zheng, C.: Theory and Applications of Lattice Boltzmann Method. Science Press, Beijing (2009) Guo, Z., Zheng, C.: Theory and Applications of Lattice Boltzmann Method. Science Press, Beijing (2009)
5.
Zurück zum Zitat He, Y., Wang, Y., Li, Q., et al.: Lattice Boltzmann Method: Theory and Applications. Science Press, Beijing (2009) He, Y., Wang, Y., Li, Q., et al.: Lattice Boltzmann Method: Theory and Applications. Science Press, Beijing (2009)
6.
Zurück zum Zitat He, Y., Li, Q., Wang, Y., et al.: Lattice Boltzmann method and its applications in engineering thermophysics. Chin. Sci. Bull. 54, 4117–4134 (2009)CrossRef He, Y., Li, Q., Wang, Y., et al.: Lattice Boltzmann method and its applications in engineering thermophysics. Chin. Sci. Bull. 54, 4117–4134 (2009)CrossRef
8.
Zurück zum Zitat Huang, H., Sukop, M.C., Lu, X.-Y., et al.: Multiphase Lattice Boltzmann Methods: Theory and Application. Wiley, New York (2015)CrossRef Huang, H., Sukop, M.C., Lu, X.-Y., et al.: Multiphase Lattice Boltzmann Methods: Theory and Application. Wiley, New York (2015)CrossRef
9.
Zurück zum Zitat Li, Q., Luo, K., Kang, Q., et al.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRef Li, Q., Luo, K., Kang, Q., et al.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRef
10.
Zurück zum Zitat Yu, D., Mei, R., Luo, L.-S., et al.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aeosp. Sci. 39, 329–367 (2003)CrossRef Yu, D., Mei, R., Luo, L.-S., et al.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aeosp. Sci. 39, 329–367 (2003)CrossRef
11.
Zurück zum Zitat Jiao, K., Li, X.: Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37, 221–291 (2011)CrossRef Jiao, K., Li, X.: Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37, 221–291 (2011)CrossRef
12.
Zurück zum Zitat Mukherjee, P.P., Kang, Q., Wang, C.-Y., et al.: Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy Environ. Sci. 4, 346–369 (2011)CrossRef Mukherjee, P.P., Kang, Q., Wang, C.-Y., et al.: Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy Environ. Sci. 4, 346–369 (2011)CrossRef
13.
Zurück zum Zitat Zhao, T., Xu, C., Chen, R., et al.: Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 35, 275–292 (2009)CrossRef Zhao, T., Xu, C., Chen, R., et al.: Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 35, 275–292 (2009)CrossRef
14.
Zurück zum Zitat Xu, Q., Zhao, T.: Fundamental models for flow batteries. Prog. Energy Combust. Sci. 49, 40–58 (2015)CrossRef Xu, Q., Zhao, T.: Fundamental models for flow batteries. Prog. Energy Combust. Sci. 49, 40–58 (2015)CrossRef
15.
Zurück zum Zitat Yang, Z., Zhang, J., Kintner-Meyer, M.C., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)CrossRef Yang, Z., Zhang, J., Kintner-Meyer, M.C., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)CrossRef
16.
Zurück zum Zitat Hatzell, K.B., Boota, M., Gogotsi, Y., et al.: Materials for suspension (semi-solid) electrodes for energy and water technologies. Chem. Soc. Rev. 44, 8664–8687 (2015)CrossRef Hatzell, K.B., Boota, M., Gogotsi, Y., et al.: Materials for suspension (semi-solid) electrodes for energy and water technologies. Chem. Soc. Rev. 44, 8664–8687 (2015)CrossRef
18.
Zurück zum Zitat Frisch, U., Hasslacher, B., Pomeau, Y., et al.: Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56, 1505 (1986)CrossRef Frisch, U., Hasslacher, B., Pomeau, Y., et al.: Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56, 1505 (1986)CrossRef
19.
Zurück zum Zitat McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332 (1988)CrossRef McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332 (1988)CrossRef
20.
Zurück zum Zitat Qian, Y., D’Humières, D., Lallemand, P., et al.: Lattice BGK models for Navier–Stokes equation. EPL 17, 479–484 (1992)MATHCrossRef Qian, Y., D’Humières, D., Lallemand, P., et al.: Lattice BGK models for Navier–Stokes equation. EPL 17, 479–484 (1992)MATHCrossRef
21.
Zurück zum Zitat He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811 (1997)CrossRef He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811 (1997)CrossRef
22.
Zurück zum Zitat Bhatnagar, P.L., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954) Bhatnagar, P.L., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)
23.
Zurück zum Zitat Xu, K.: Direct Modeling for Computational Fluid Dynamics, vol. 4. World Scientific, Singapore (2015)MATH Xu, K.: Direct Modeling for Computational Fluid Dynamics, vol. 4. World Scientific, Singapore (2015)MATH
25.
Zurück zum Zitat Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546 (2000)MathSciNetCrossRef Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546 (2000)MathSciNetCrossRef
26.
Zurück zum Zitat d’Humières, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360, 437–451 (2002)MathSciNetMATHCrossRef d’Humières, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360, 437–451 (2002)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Huang, H., Krafczyk, M., Lu, X., et al.: Forcing term in single-phase and Shan–Chen-type multiphase lattice Boltzmann models. Phys. Rev. E 84, 046710 (2011)CrossRef Huang, H., Krafczyk, M., Lu, X., et al.: Forcing term in single-phase and Shan–Chen-type multiphase lattice Boltzmann models. Phys. Rev. E 84, 046710 (2011)CrossRef
28.
Zurück zum Zitat Guo, Z., Zheng, C., Shi, B., et al.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)MATHCrossRef Guo, Z., Zheng, C., Shi, B., et al.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)MATHCrossRef
29.
Zurück zum Zitat Guo, Z., Zheng, C.: Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid Dyn. 22, 465–473 (2008) Guo, Z., Zheng, C.: Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid Dyn. 22, 465–473 (2008)
30.
Zurück zum Zitat Tölke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int. J. Comput. Fluid Dyn. 22, 443–456 (2008)MATHCrossRef Tölke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int. J. Comput. Fluid Dyn. 22, 443–456 (2008)MATHCrossRef
31.
Zurück zum Zitat Delbosc, N., Summers, J., Khan, A., et al.: Optimized implementation of the lattice Boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput. Math. Appl. 67, 462–475 (2014)MathSciNetMATHCrossRef Delbosc, N., Summers, J., Khan, A., et al.: Optimized implementation of the lattice Boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput. Math. Appl. 67, 462–475 (2014)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Lin, L.-S., Chang, H.-W., Lin, C.-A., et al.: Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU. Comput. Fluids 80, 381–387 (2013)CrossRef Lin, L.-S., Chang, H.-W., Lin, C.-A., et al.: Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU. Comput. Fluids 80, 381–387 (2013)CrossRef
33.
Zurück zum Zitat Chang, H.-W., Hong, P.-Y., Lin, L.-S., et al.: Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units. Comput. Fluids 88, 866–871 (2013)CrossRef Chang, H.-W., Hong, P.-Y., Lin, L.-S., et al.: Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units. Comput. Fluids 88, 866–871 (2013)CrossRef
34.
Zurück zum Zitat Huang, C., Shi, B., He, N., et al.: Implementation of multi-GPU based lattice Boltzmann method for flow through porous media. Adv. Appl. Math. Mech. 7, 1–12 (2015)MathSciNetCrossRef Huang, C., Shi, B., He, N., et al.: Implementation of multi-GPU based lattice Boltzmann method for flow through porous media. Adv. Appl. Math. Mech. 7, 1–12 (2015)MathSciNetCrossRef
35.
Zurück zum Zitat Huang, C., Shi, B., Guo, Z., et al.: Multi-GPU based lattice Boltzmann method for hemodynamic simulation in patient-specific cerebral aneurysm. Commun. Comput. Phys. 17, 960–974 (2015)MathSciNetCrossRef Huang, C., Shi, B., Guo, Z., et al.: Multi-GPU based lattice Boltzmann method for hemodynamic simulation in patient-specific cerebral aneurysm. Commun. Comput. Phys. 17, 960–974 (2015)MathSciNetCrossRef
36.
Zurück zum Zitat Xu, A., Shi, L., Zhao, T., et al.: Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Int. J. Heat Mass Transf. 109, 577–588 (2017)CrossRef Xu, A., Shi, L., Zhao, T., et al.: Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Int. J. Heat Mass Transf. 109, 577–588 (2017)CrossRef
37.
Zurück zum Zitat Gunstensen, A.K., Rothman, D.H., Zaleski, S., et al.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320 (1991)CrossRef Gunstensen, A.K., Rothman, D.H., Zaleski, S., et al.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320 (1991)CrossRef
38.
Zurück zum Zitat Grunau, D., Chen, S., Eggert, K., et al.: A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids 5, 2557–2562 (1993)MATHCrossRef Grunau, D., Chen, S., Eggert, K., et al.: A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids 5, 2557–2562 (1993)MATHCrossRef
39.
Zurück zum Zitat Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815 (1993)CrossRef Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815 (1993)CrossRef
40.
Zurück zum Zitat Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941 (1994)CrossRef Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941 (1994)CrossRef
41.
Zurück zum Zitat Swift, M.R., Osborn, W., Yeomans, J., et al.: Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830 (1995)CrossRef Swift, M.R., Osborn, W., Yeomans, J., et al.: Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830 (1995)CrossRef
42.
Zurück zum Zitat Swift, M.R., Orlandini, E., Osborn, W., et al.: Lattice boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 54, 5041 (1996)CrossRef Swift, M.R., Orlandini, E., Osborn, W., et al.: Lattice boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 54, 5041 (1996)CrossRef
43.
Zurück zum Zitat He, X., Chen, S., Zhang, R., et al.: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152, 642–663 (1999)MathSciNetMATHCrossRef He, X., Chen, S., Zhang, R., et al.: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152, 642–663 (1999)MathSciNetMATHCrossRef
45.
Zurück zum Zitat Huang, H., Huang, J.-J., Lu, X.-Y., et al.: On simulations of high density ratio flows using color-gradient multiphase lattice Boltzmann models. Int. J. Mod. Phys. C 24, 1350021 (2013)CrossRef Huang, H., Huang, J.-J., Lu, X.-Y., et al.: On simulations of high density ratio flows using color-gradient multiphase lattice Boltzmann models. Int. J. Mod. Phys. C 24, 1350021 (2013)CrossRef
46.
Zurück zum Zitat Huang, H., Huang, J.-J., Lu, X.-Y., et al.: Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Comput. Fluids 93, 164–172 (2014)MathSciNetCrossRef Huang, H., Huang, J.-J., Lu, X.-Y., et al.: Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Comput. Fluids 93, 164–172 (2014)MathSciNetCrossRef
47.
Zurück zum Zitat Ba, Y., Liu, H., Li, Q., et al.: Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 94, 023310 (2016)CrossRef Ba, Y., Liu, H., Li, Q., et al.: Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 94, 023310 (2016)CrossRef
49.
Zurück zum Zitat Shan, X.: Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys. Rev. E 73, 047701 (2006)CrossRef Shan, X.: Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys. Rev. E 73, 047701 (2006)CrossRef
50.
Zurück zum Zitat Sbragaglia, M., Benzi, R., Biferale, L., et al.: Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E 75, 026702 (2007)MathSciNetCrossRef Sbragaglia, M., Benzi, R., Biferale, L., et al.: Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E 75, 026702 (2007)MathSciNetCrossRef
51.
Zurück zum Zitat Kupershtokh, A., Medvedev, D., Karpov, D., et al.: On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 58, 965–974 (2009)MathSciNetMATHCrossRef Kupershtokh, A., Medvedev, D., Karpov, D., et al.: On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 58, 965–974 (2009)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Gong, S., Cheng, P.: Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids 53, 93–104 (2012)MathSciNetMATHCrossRef Gong, S., Cheng, P.: Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids 53, 93–104 (2012)MathSciNetMATHCrossRef
53.
Zurück zum Zitat Li, Q., Luo, K., Li, X., et al.: Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys. Rev. E 86, 016709 (2012)CrossRef Li, Q., Luo, K., Li, X., et al.: Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys. Rev. E 86, 016709 (2012)CrossRef
54.
Zurück zum Zitat Li, Q., Luo, K., Li, X., et al.: Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys. Rev. E 87, 053301 (2013)CrossRef Li, Q., Luo, K., Li, X., et al.: Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys. Rev. E 87, 053301 (2013)CrossRef
55.
Zurück zum Zitat Li, Q., Luo, K.: Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Phys. Rev. E 88, 053307 (2013)CrossRef Li, Q., Luo, K.: Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Phys. Rev. E 88, 053307 (2013)CrossRef
56.
Zurück zum Zitat Xu, A., Zhao, T., An, L., et al.: A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. Int. J. Heat Fluid Flow 56, 261–271 (2015)CrossRef Xu, A., Zhao, T., An, L., et al.: A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. Int. J. Heat Fluid Flow 56, 261–271 (2015)CrossRef
57.
Zurück zum Zitat Li, Q., Zhou, P., Yan, H., et al.: Revised Chapman–Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Phys. Rev. E 94, 043313 (2016)CrossRef Li, Q., Zhou, P., Yan, H., et al.: Revised Chapman–Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Phys. Rev. E 94, 043313 (2016)CrossRef
58.
Zurück zum Zitat Reijers, S., Gelderblom, H., Toschi, F., et al.: Axisymmetric multiphase lattice Boltzmann method for generic equations of state. J. Comput. Sci. 17, 309–314 (2016)MathSciNetCrossRef Reijers, S., Gelderblom, H., Toschi, F., et al.: Axisymmetric multiphase lattice Boltzmann method for generic equations of state. J. Comput. Sci. 17, 309–314 (2016)MathSciNetCrossRef
59.
Zurück zum Zitat Inamuro, T., Konishi, N., Ogino, F., et al.: A galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Comput. Phys. Commun. 129, 32–45 (2000)MathSciNetMATHCrossRef Inamuro, T., Konishi, N., Ogino, F., et al.: A galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Comput. Phys. Commun. 129, 32–45 (2000)MathSciNetMATHCrossRef
60.
Zurück zum Zitat Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRef Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRef
61.
Zurück zum Zitat Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)CrossRef Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)CrossRef
62.
Zurück zum Zitat Allen, S.M., Cahn, J.W.: Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe–Al alloys. Acta Metall. 24, 425–437 (1976)CrossRef Allen, S.M., Cahn, J.W.: Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe–Al alloys. Acta Metall. 24, 425–437 (1976)CrossRef
63.
Zurück zum Zitat Wang, H., Chai, Z., Shi, B., et al.: Comparative study of the lattice Boltzmann models for Allen–Cahn and Cahn–Hilliard equations. Phys. Rev. E 94, 033304 (2016)CrossRef Wang, H., Chai, Z., Shi, B., et al.: Comparative study of the lattice Boltzmann models for Allen–Cahn and Cahn–Hilliard equations. Phys. Rev. E 94, 033304 (2016)CrossRef
64.
Zurück zum Zitat Inamuro, T., Ogata, T., Tajima, S., et al.: A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198, 628–644 (2004)MATHCrossRef Inamuro, T., Ogata, T., Tajima, S., et al.: A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198, 628–644 (2004)MATHCrossRef
65.
Zurück zum Zitat Lee, T., Lin, C.-L.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206, 16–47 (2005)MathSciNetMATHCrossRef Lee, T., Lin, C.-L.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206, 16–47 (2005)MathSciNetMATHCrossRef
66.
Zurück zum Zitat Huang, H., Zheng, H., Lu, X.-Y., et al.: An evaluation of a 3D free-energybased lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Numer. Methods Fluids 63, 1193–1207 (2010)MATH Huang, H., Zheng, H., Lu, X.-Y., et al.: An evaluation of a 3D free-energybased lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Numer. Methods Fluids 63, 1193–1207 (2010)MATH
67.
Zurück zum Zitat Shao, J., Shu, C., Huang, H., et al.: Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Phys. Rev. E 89, 033309 (2014)CrossRef Shao, J., Shu, C., Huang, H., et al.: Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Phys. Rev. E 89, 033309 (2014)CrossRef
68.
Zurück zum Zitat Huang, H., Huang, J.-J., Lu, X.-Y., et al.: A mass-conserving axisymmetric multiphase lattice Boltzmann method and its application in simulation of bubble rising. J. Comput. Phys. 269, 386–402 (2014)MathSciNetMATHCrossRef Huang, H., Huang, J.-J., Lu, X.-Y., et al.: A mass-conserving axisymmetric multiphase lattice Boltzmann method and its application in simulation of bubble rising. J. Comput. Phys. 269, 386–402 (2014)MathSciNetMATHCrossRef
69.
Zurück zum Zitat Liang, H., Chai, Z., Shi, B., et al.: Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 90, 063311 (2014)CrossRef Liang, H., Chai, Z., Shi, B., et al.: Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 90, 063311 (2014)CrossRef
70.
Zurück zum Zitat Li, Q., Luo, K., Gao, Y., et al.: Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys. Rev. E 85, 026704 (2012)CrossRef Li, Q., Luo, K., Gao, Y., et al.: Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys. Rev. E 85, 026704 (2012)CrossRef
71.
Zurück zum Zitat Liang, H., Shi, B., Guo, Z., et al.: Phase-field-based multiple-relaxationtime lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E 89, 053320 (2014)CrossRef Liang, H., Shi, B., Guo, Z., et al.: Phase-field-based multiple-relaxationtime lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E 89, 053320 (2014)CrossRef
72.
Zurück zum Zitat Wang, L., Huang, H.-B., Lu, X.-Y., et al.: Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method. Phys. Rev. E 87, 013301 (2013)CrossRef Wang, L., Huang, H.-B., Lu, X.-Y., et al.: Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method. Phys. Rev. E 87, 013301 (2013)CrossRef
73.
Zurück zum Zitat Huang, J.-J., Huang, H., Wang, X., et al.: Numerical study of drop motion on a surface with stepwise wettability gradient and contact angle hysteresis. Phys. Fluids 26, 062101 (2014)CrossRef Huang, J.-J., Huang, H., Wang, X., et al.: Numerical study of drop motion on a surface with stepwise wettability gradient and contact angle hysteresis. Phys. Fluids 26, 062101 (2014)CrossRef
74.
Zurück zum Zitat Huang, J.-J., Huang, H., Wang, X., et al.: Wetting boundary conditions in numerical simulation of binary fluids by using phase-field method: some comparative studies and new development. Int. J. Numer. Methods Fluids 77, 123–158 (2015)MathSciNetCrossRef Huang, J.-J., Huang, H., Wang, X., et al.: Wetting boundary conditions in numerical simulation of binary fluids by using phase-field method: some comparative studies and new development. Int. J. Numer. Methods Fluids 77, 123–158 (2015)MathSciNetCrossRef
75.
Zurück zum Zitat Liang, H., Shi, B., Chai, Z., et al.: Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E 93, 013308 (2016)CrossRef Liang, H., Shi, B., Chai, Z., et al.: Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E 93, 013308 (2016)CrossRef
76.
Zurück zum Zitat Chao, J., Mei, R., Singh, R., et al.: A filter-based, mass-conserving lattice Boltzmann method for immiscible multiphase flows. Int. J. Numer. Methods Fluids 66, 622–647 (2011)MathSciNetMATHCrossRef Chao, J., Mei, R., Singh, R., et al.: A filter-based, mass-conserving lattice Boltzmann method for immiscible multiphase flows. Int. J. Numer. Methods Fluids 66, 622–647 (2011)MathSciNetMATHCrossRef
77.
Zurück zum Zitat Huang, H., Wang, L., Lu, X.-Y., et al.: Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput. Math. Appl. 61, 3606–3617 (2011)MathSciNetMATHCrossRef Huang, H., Wang, L., Lu, X.-Y., et al.: Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput. Math. Appl. 61, 3606–3617 (2011)MathSciNetMATHCrossRef
78.
Zurück zum Zitat Cheng, P., Quan, X., Gong, S., et al.: Chapter four-recent analytical and numerical studies on phase-change heat transfer. Adv. Heat Transf. 46, 187–248 (2014)CrossRef Cheng, P., Quan, X., Gong, S., et al.: Chapter four-recent analytical and numerical studies on phase-change heat transfer. Adv. Heat Transf. 46, 187–248 (2014)CrossRef
79.
Zurück zum Zitat Gong, S., Cheng, P.: A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int. J. Heat Mass Transf. 55, 4923–4927 (2012)CrossRef Gong, S., Cheng, P.: A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int. J. Heat Mass Transf. 55, 4923–4927 (2012)CrossRef
80.
Zurück zum Zitat Li, Q., Kang, Q., Francois, M., et al.: Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. Int. J. Heat Mass Transf. 85, 787–796 (2015)CrossRef Li, Q., Kang, Q., Francois, M., et al.: Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. Int. J. Heat Mass Transf. 85, 787–796 (2015)CrossRef
81.
Zurück zum Zitat Chai, Z.-H., Zhao, T.-S.: A pseudopotential-based multiple-relaxationtime lattice Boltzmann model for multicomponent/multiphase flows. Acta Mech. Sin. 28, 983–992 (2012)MathSciNetMATHCrossRef Chai, Z.-H., Zhao, T.-S.: A pseudopotential-based multiple-relaxationtime lattice Boltzmann model for multicomponent/multiphase flows. Acta Mech. Sin. 28, 983–992 (2012)MathSciNetMATHCrossRef
82.
Zurück zum Zitat Sukop, M.C., Huang, H., Lin, C.L., et al.: Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-X-ray tomography. Phys. Rev. E 77, 026710 (2008)CrossRef Sukop, M.C., Huang, H., Lin, C.L., et al.: Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-X-ray tomography. Phys. Rev. E 77, 026710 (2008)CrossRef
83.
Zurück zum Zitat Huang, H., Li, Z., Liu, S., et al.: Shan-and-chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Methods Fluids 61, 341–354 (2009)MathSciNetMATHCrossRef Huang, H., Li, Z., Liu, S., et al.: Shan-and-chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Methods Fluids 61, 341–354 (2009)MathSciNetMATHCrossRef
84.
Zurück zum Zitat Huang, H., Lu, X.-Y.: Relative permeabilities and coupling effects in steadystate gas-liquid flow in porous media: a lattice Boltzmann study. Phys. Fluids 21, 092104 (2009)MATHCrossRef Huang, H., Lu, X.-Y.: Relative permeabilities and coupling effects in steadystate gas-liquid flow in porous media: a lattice Boltzmann study. Phys. Fluids 21, 092104 (2009)MATHCrossRef
85.
Zurück zum Zitat Chen, L., Kang, Q., Mu, Y., et al.: A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int. J. Heat Mass Transf. 76, 210–236 (2014)CrossRef Chen, L., Kang, Q., Mu, Y., et al.: A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int. J. Heat Mass Transf. 76, 210–236 (2014)CrossRef
86.
Zurück zum Zitat Shan, X.: Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys. Rev. E 77, 066702 (2008)CrossRef Shan, X.: Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys. Rev. E 77, 066702 (2008)CrossRef
87.
Zurück zum Zitat Li, Q., Luo, K.: Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid-vapor flows. Appl. Therm. Eng. 72, 56–61 (2014)CrossRef Li, Q., Luo, K.: Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid-vapor flows. Appl. Therm. Eng. 72, 56–61 (2014)CrossRef
88.
Zurück zum Zitat Li, Q., Luo, K.: Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Phys. Rev. E 89, 053022 (2014)CrossRef Li, Q., Luo, K.: Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Phys. Rev. E 89, 053022 (2014)CrossRef
89.
Zurück zum Zitat Martys, N.S., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743 (1996)CrossRef Martys, N.S., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743 (1996)CrossRef
90.
Zurück zum Zitat Kang, Q., Zhang, D., Chen, S., et al.: Displacement of a two-dimensional immiscible droplet in a channel. Phys. Fluids 14, 3203–3214 (2002)MATHCrossRef Kang, Q., Zhang, D., Chen, S., et al.: Displacement of a two-dimensional immiscible droplet in a channel. Phys. Fluids 14, 3203–3214 (2002)MATHCrossRef
91.
Zurück zum Zitat Benzi, R., Biferale, L., Sbragaglia, M., et al.: Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509 (2006)MathSciNetCrossRef Benzi, R., Biferale, L., Sbragaglia, M., et al.: Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509 (2006)MathSciNetCrossRef
92.
Zurück zum Zitat Li, Q., Luo, K., Kang, Q., et al.: Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys. Rev. E 90, 053301 (2014)CrossRef Li, Q., Luo, K., Kang, Q., et al.: Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys. Rev. E 90, 053301 (2014)CrossRef
93.
Zurück zum Zitat Chai, Z., Zhao, T.: Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor. Phys. Rev. E 86, 016705 (2012)CrossRef Chai, Z., Zhao, T.: Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor. Phys. Rev. E 86, 016705 (2012)CrossRef
94.
Zurück zum Zitat Huang, H., Thorne Jr., D.T., Schaap, M.G., et al.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)CrossRef Huang, H., Thorne Jr., D.T., Schaap, M.G., et al.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)CrossRef
95.
Zurück zum Zitat Gong, S., Cheng, P.: Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int. J. Heat Mass Transf. 64, 122–132 (2013)CrossRef Gong, S., Cheng, P.: Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int. J. Heat Mass Transf. 64, 122–132 (2013)CrossRef
96.
Zurück zum Zitat Gong, S., Cheng, P.: Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int. J. Heat Mass Transf. 80, 206–216 (2015)CrossRef Gong, S., Cheng, P.: Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int. J. Heat Mass Transf. 80, 206–216 (2015)CrossRef
97.
Zurück zum Zitat Zhang, C., Cheng, P.: Mesoscale simulations of boiling curves and boiling hysteresis under constant wall temperature and constant heat flux conditions. Int. J. Heat Mass Transf. 110, 319–329 (2017)CrossRef Zhang, C., Cheng, P.: Mesoscale simulations of boiling curves and boiling hysteresis under constant wall temperature and constant heat flux conditions. Int. J. Heat Mass Transf. 110, 319–329 (2017)CrossRef
98.
Zurück zum Zitat Li, Q., Kang, Q., Francois, M., et al.: Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Soft Matter 12, 302–312 (2016)CrossRef Li, Q., Kang, Q., Francois, M., et al.: Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Soft Matter 12, 302–312 (2016)CrossRef
99.
Zurück zum Zitat Li, Q., Zhou, P., Yan, H., et al.: Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a lattice Boltzmann study. Langmuir 32, 9389–9396 (2016)CrossRef Li, Q., Zhou, P., Yan, H., et al.: Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a lattice Boltzmann study. Langmuir 32, 9389–9396 (2016)CrossRef
100.
Zurück zum Zitat Lou, Q., Guo, Z., Shi, B., et al.: Evaluation of out flow boundary conditions for two-phase lattice Boltzmann equation. Phys. Rev. E 87, 063301 (2013)CrossRef Lou, Q., Guo, Z., Shi, B., et al.: Evaluation of out flow boundary conditions for two-phase lattice Boltzmann equation. Phys. Rev. E 87, 063301 (2013)CrossRef
101.
Zurück zum Zitat Li, L., Jia, X., Liu, Y., et al.: Modified outlet boundary condition schemes for large density ratio lattice Boltzmann models. J. Heat Transf. Trans. ASME 139, 052003 (2017)CrossRef Li, L., Jia, X., Liu, Y., et al.: Modified outlet boundary condition schemes for large density ratio lattice Boltzmann models. J. Heat Transf. Trans. ASME 139, 052003 (2017)CrossRef
102.
Zurück zum Zitat Nithiarasu, P., Seetharamu, K., Sundararajan, T., et al.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955–3967 (1997)MATHCrossRef Nithiarasu, P., Seetharamu, K., Sundararajan, T., et al.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955–3967 (1997)MATHCrossRef
103.
Zurück zum Zitat Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)CrossRef Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)CrossRef
104.
Zurück zum Zitat Guo, Z., Zhao, T.: A lattice Boltzmann model for convection heat transfer in porous media. Numer. Heat Transf. B Fundam. 47, 157–177 (2005)CrossRef Guo, Z., Zhao, T.: A lattice Boltzmann model for convection heat transfer in porous media. Numer. Heat Transf. B Fundam. 47, 157–177 (2005)CrossRef
105.
Zurück zum Zitat Liu, Q., He, Y.-L., Li, Q., et al.: A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 73, 761–775 (2014)CrossRef Liu, Q., He, Y.-L., Li, Q., et al.: A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 73, 761–775 (2014)CrossRef
106.
Zurück zum Zitat Wang, L., Mi, J., Guo, Z., et al.: A modified lattice Bhatnagar–Gross–Krook model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 94, 269–291 (2016)CrossRef Wang, L., Mi, J., Guo, Z., et al.: A modified lattice Bhatnagar–Gross–Krook model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 94, 269–291 (2016)CrossRef
107.
Zurück zum Zitat Rong, F., Guo, Z., Chai, Z., et al.: A lattice Boltzmann model for axisymmetric thermal flows through porous media. Int. J. Heat Mass Transf. 53, 5519–5527 (2010)MATHCrossRef Rong, F., Guo, Z., Chai, Z., et al.: A lattice Boltzmann model for axisymmetric thermal flows through porous media. Int. J. Heat Mass Transf. 53, 5519–5527 (2010)MATHCrossRef
108.
Zurück zum Zitat Chai, Z., Guo, Z., Shi, B., et al.: Study of electro-osmotic flows in microchannels packed with variable porosity media via lattice Boltzmann method. J. Appl. Phys. 101, 104913 (2007)CrossRef Chai, Z., Guo, Z., Shi, B., et al.: Study of electro-osmotic flows in microchannels packed with variable porosity media via lattice Boltzmann method. J. Appl. Phys. 101, 104913 (2007)CrossRef
109.
Zurück zum Zitat Mattila, K., Puurtinen, T., Hyväluoma, J., et al.: A prospect for computing in porous materials research: very large fluid flow simulations. J. Comput. Sci. 12, 62–76 (2016)CrossRef Mattila, K., Puurtinen, T., Hyväluoma, J., et al.: A prospect for computing in porous materials research: very large fluid flow simulations. J. Comput. Sci. 12, 62–76 (2016)CrossRef
110.
Zurück zum Zitat Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phys. Rev. E 79, 016701 (2009)CrossRef Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phys. Rev. E 79, 016701 (2009)CrossRef
111.
Zurück zum Zitat Li, Q., He, Y., Tang, G., et al.: Lattice Boltzmann model for axisymmetric thermal flows. Phys. Rev. E 80, 037702 (2009)CrossRef Li, Q., He, Y., Tang, G., et al.: Lattice Boltzmann model for axisymmetric thermal flows. Phys. Rev. E 80, 037702 (2009)CrossRef
112.
Zurück zum Zitat Huang, H.-B., Lu, X.-Y., Sukop, M., et al.: Numerical study of lattice Boltzmann methods for a convection–diffusion equation coupled with Navier–Stokes equations. J. Phys. A Math. Theor. 44, 055001 (2011)MathSciNetMATHCrossRef Huang, H.-B., Lu, X.-Y., Sukop, M., et al.: Numerical study of lattice Boltzmann methods for a convection–diffusion equation coupled with Navier–Stokes equations. J. Phys. A Math. Theor. 44, 055001 (2011)MathSciNetMATHCrossRef
113.
Zurück zum Zitat Li, Q., Luo, K., He, Y., et al.: Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices. Phys. Rev. E 85, 016710 (2012)CrossRef Li, Q., Luo, K., He, Y., et al.: Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices. Phys. Rev. E 85, 016710 (2012)CrossRef
114.
Zurück zum Zitat Wang, J., Wang, D., Lallemand, P., et al.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math. Appl. 65, 262–286 (2013)MathSciNetMATHCrossRef Wang, J., Wang, D., Lallemand, P., et al.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math. Appl. 65, 262–286 (2013)MathSciNetMATHCrossRef
115.
Zurück zum Zitat Chai, Z., Zhao, T.: Lattice Boltzmann model for the convection–diffusion equation. Phys. Rev. E 87, 063309 (2013)CrossRef Chai, Z., Zhao, T.: Lattice Boltzmann model for the convection–diffusion equation. Phys. Rev. E 87, 063309 (2013)CrossRef
116.
Zurück zum Zitat Chai, Z., Zhao, T.: Nonequilibrium scheme for computing the flux of the convection–diffusion equation in the framework of the lattice Boltzmann method. Phys. Rev. E 90, 013305 (2014)CrossRef Chai, Z., Zhao, T.: Nonequilibrium scheme for computing the flux of the convection–diffusion equation in the framework of the lattice Boltzmann method. Phys. Rev. E 90, 013305 (2014)CrossRef
117.
Zurück zum Zitat Li, Q., Chai, Z., Shi, B., et al.: An efficient lattice Boltzmann model for steady convection–diffusion equation. J. Sci. Comput. 61, 308–326 (2014)MathSciNetMATHCrossRef Li, Q., Chai, Z., Shi, B., et al.: An efficient lattice Boltzmann model for steady convection–diffusion equation. J. Sci. Comput. 61, 308–326 (2014)MathSciNetMATHCrossRef
118.
Zurück zum Zitat Li, Q., Chai, Z., Shi, B., et al.: Lattice Boltzmann model for a class of convection–diffusion equations with variable coefficients. Comput. Math. Appl. 70, 548–561 (2015)MathSciNetCrossRef Li, Q., Chai, Z., Shi, B., et al.: Lattice Boltzmann model for a class of convection–diffusion equations with variable coefficients. Comput. Math. Appl. 70, 548–561 (2015)MathSciNetCrossRef
119.
Zurück zum Zitat Liu, Q., He, Y.-L., Li, D., et al.: Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows. Int. J. Heat Mass Transf. 102, 1334–1344 (2016) Liu, Q., He, Y.-L., Li, D., et al.: Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows. Int. J. Heat Mass Transf. 102, 1334–1344 (2016)
120.
Zurück zum Zitat Guo, Z., Zhao, T., Shi, Y., et al.: A lattice Boltzmann algorithm for electro-osmotic flows in micro fluidic devices. J. Chem. Phys. 122, 144907 (2005)CrossRef Guo, Z., Zhao, T., Shi, Y., et al.: A lattice Boltzmann algorithm for electro-osmotic flows in micro fluidic devices. J. Chem. Phys. 122, 144907 (2005)CrossRef
121.
Zurück zum Zitat Wang, J., Wang, M., Li, Z., et al.: Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296, 729–736 (2006)CrossRef Wang, J., Wang, M., Li, Z., et al.: Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296, 729–736 (2006)CrossRef
122.
Zurück zum Zitat Chai, Z., Shi, B.: Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys. Lett. A 364, 183–188 (2007)MATHCrossRef Chai, Z., Shi, B.: Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys. Lett. A 364, 183–188 (2007)MATHCrossRef
123.
124.
Zurück zum Zitat Shi, Y., Zhao, T., Guo, Z., et al.: Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat transfer. Int. J. Heat Mass Transf. 51, 586–596 (2008)MATHCrossRef Shi, Y., Zhao, T., Guo, Z., et al.: Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat transfer. Int. J. Heat Mass Transf. 51, 586–596 (2008)MATHCrossRef
125.
Zurück zum Zitat Tang, G., He, Y., Tao, W., et al.: Numerical analysis of mixing enhancement for micro-electroosmotic flow. J. Appl. Phys. 107, 104906 (2010)CrossRef Tang, G., He, Y., Tao, W., et al.: Numerical analysis of mixing enhancement for micro-electroosmotic flow. J. Appl. Phys. 107, 104906 (2010)CrossRef
126.
Zurück zum Zitat Wang, M., Kang, Q.: Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. J. Comput. Phys. 229, 728–744 (2010)MathSciNetMATHCrossRef Wang, M., Kang, Q.: Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. J. Comput. Phys. 229, 728–744 (2010)MathSciNetMATHCrossRef
127.
Zurück zum Zitat Yang, X., Shi, B., Chai, Z., et al.: A coupled lattice Boltzmann method to solve Nernst–Planck model for simulating electro-osmotic flows. J. Sci. Comput. 61, 222–238 (2014)MathSciNetMATHCrossRef Yang, X., Shi, B., Chai, Z., et al.: A coupled lattice Boltzmann method to solve Nernst–Planck model for simulating electro-osmotic flows. J. Sci. Comput. 61, 222–238 (2014)MathSciNetMATHCrossRef
128.
Zurück zum Zitat Chai, Z., Shi, B., Guo, Z., et al.: A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection–diffusion equations. J. Sci. Comput. 69, 355–390 (2016)MathSciNetMATHCrossRef Chai, Z., Shi, B., Guo, Z., et al.: A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection–diffusion equations. J. Sci. Comput. 69, 355–390 (2016)MathSciNetMATHCrossRef
129.
Zurück zum Zitat Pan, C., Luo, L.-S., Miller, C.T., et al.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35, 898–909 (2006)MATHCrossRef Pan, C., Luo, L.-S., Miller, C.T., et al.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35, 898–909 (2006)MATHCrossRef
130.
Zurück zum Zitat Chai, Z., Shi, B., Lu, J., et al.: Non-Darcy flow in disordered porous media: a lattice Boltzmann study. Comput. Fluids 39, 2069–2077 (2010)MathSciNetMATHCrossRef Chai, Z., Shi, B., Lu, J., et al.: Non-Darcy flow in disordered porous media: a lattice Boltzmann study. Comput. Fluids 39, 2069–2077 (2010)MathSciNetMATHCrossRef
131.
Zurück zum Zitat Khabbazi, A.E., Ellis, J., Bazylak, A., et al.: Developing a new form of the Kozeny–Carman parameter for structured porous media through lattice-Boltzmann modeling. Comput. Fluids 75, 35–41 (2013)MATHCrossRef Khabbazi, A.E., Ellis, J., Bazylak, A., et al.: Developing a new form of the Kozeny–Carman parameter for structured porous media through lattice-Boltzmann modeling. Comput. Fluids 75, 35–41 (2013)MATHCrossRef
132.
Zurück zum Zitat Wang, M., He, J., Yu, J., et al.: Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Int. J. Therm. Sci. 46, 848–855 (2007)CrossRef Wang, M., He, J., Yu, J., et al.: Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Int. J. Therm. Sci. 46, 848–855 (2007)CrossRef
133.
Zurück zum Zitat Wang, M., Wang, J., Pan, N., et al.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75, 036702 (2007)CrossRef Wang, M., Wang, J., Pan, N., et al.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75, 036702 (2007)CrossRef
134.
Zurück zum Zitat Wang, M., Pan, N.: Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf. 51, 1325–1331 (2008)MATHCrossRef Wang, M., Pan, N.: Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf. 51, 1325–1331 (2008)MATHCrossRef
135.
Zurück zum Zitat Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep. 63, 1–30 (2008)CrossRef Wang, M., Pan, N.: Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep. 63, 1–30 (2008)CrossRef
136.
Zurück zum Zitat Jeong, N., Choi, D.H., Lin, C.-L., et al.: Estimation of thermal and mass diffusivity in a porous medium of complex structure using a lattice Boltzmann method. Int. J. Heat Mass Transf. 51, 3913–3923 (2008)MATHCrossRef Jeong, N., Choi, D.H., Lin, C.-L., et al.: Estimation of thermal and mass diffusivity in a porous medium of complex structure using a lattice Boltzmann method. Int. J. Heat Mass Transf. 51, 3913–3923 (2008)MATHCrossRef
137.
Zurück zum Zitat Xuan, Y., Zhao, K., Li, Q., et al.: Investigation on mass diffusion process in porous media based on lattice Boltzmann method. Heat Mass Transf. 46, 1039–1051 (2010)CrossRef Xuan, Y., Zhao, K., Li, Q., et al.: Investigation on mass diffusion process in porous media based on lattice Boltzmann method. Heat Mass Transf. 46, 1039–1051 (2010)CrossRef
138.
Zurück zum Zitat Chai, Z., Huang, C., Shi, B., et al.: A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media. Int. J. Heat Mass Transf. 98, 687–696 (2016)CrossRef Chai, Z., Huang, C., Shi, B., et al.: A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media. Int. J. Heat Mass Transf. 98, 687–696 (2016)CrossRef
139.
Zurück zum Zitat van der Hoef, M., van Sint Annaland, M., Deen, N., et al.: Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 47–70 (2008)MathSciNetMATHCrossRef van der Hoef, M., van Sint Annaland, M., Deen, N., et al.: Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 47–70 (2008)MathSciNetMATHCrossRef
140.
Zurück zum Zitat Tenneti, S., Subramaniam, S.: Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46, 199–230 (2014)MathSciNetMATHCrossRef Tenneti, S., Subramaniam, S.: Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46, 199–230 (2014)MathSciNetMATHCrossRef
141.
Zurück zum Zitat Qi, D., Luo, L.: Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow. Phys. Fluids 14, 4440–4443 (2002)MATHCrossRef Qi, D., Luo, L.: Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow. Phys. Fluids 14, 4440–4443 (2002)MATHCrossRef
142.
Zurück zum Zitat Qi, D., Luo, L.-S.: Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. J. Fluid Mech. 477, 201–213 (2003)MATHCrossRef Qi, D., Luo, L.-S.: Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. J. Fluid Mech. 477, 201–213 (2003)MATHCrossRef
143.
Zurück zum Zitat Huang, H., Yang, X., Krafczyk, M., et al.: Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369–394 (2012)MathSciNetMATHCrossRef Huang, H., Yang, X., Krafczyk, M., et al.: Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369–394 (2012)MathSciNetMATHCrossRef
144.
Zurück zum Zitat Huang, H., Yang, X., Lu, X.-Y.: Sedimentation of an ellipsoidal particle in narrow tubes. Phys. Fluids 26, 053302 (2014)CrossRef Huang, H., Yang, X., Lu, X.-Y.: Sedimentation of an ellipsoidal particle in narrow tubes. Phys. Fluids 26, 053302 (2014)CrossRef
145.
Zurück zum Zitat Yang, X., Huang, H., Lu, X., et al.: Sedimentation of an oblate ellipsoid in narrow tubes. Phys. Rev. E 92, 063009 (2015)CrossRef Yang, X., Huang, H., Lu, X., et al.: Sedimentation of an oblate ellipsoid in narrow tubes. Phys. Rev. E 92, 063009 (2015)CrossRef
146.
Zurück zum Zitat Yang, X., Huang, H., Lu, X.: The motion of a neutrally buoyant ellipsoid inside square tube flows. Adv. Appl. Math. Mech. 9, 233–249 (2017)MathSciNetCrossRef Yang, X., Huang, H., Lu, X.: The motion of a neutrally buoyant ellipsoid inside square tube flows. Adv. Appl. Math. Mech. 9, 233–249 (2017)MathSciNetCrossRef
147.
Zurück zum Zitat Huang, H., Wu, Y., Lu, X.: Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method. Phys. Rev. E 86, 046305 (2012)CrossRef Huang, H., Wu, Y., Lu, X.: Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method. Phys. Rev. E 86, 046305 (2012)CrossRef
148.
Zurück zum Zitat Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)MathSciNetMATHCrossRef Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)MathSciNetMATHCrossRef
149.
Zurück zum Zitat Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)MathSciNetMATHCrossRef Ladd, A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)MathSciNetMATHCrossRef
150.
Zurück zum Zitat Lishchuk, S., Halliday, I., Care, C., et al.: Shear viscosity of bulk suspensions at low Reynolds number with the three-dimensional lattice Boltzmann method. Phys. Rev. E 74, 017701 (2006)CrossRef Lishchuk, S., Halliday, I., Care, C., et al.: Shear viscosity of bulk suspensions at low Reynolds number with the three-dimensional lattice Boltzmann method. Phys. Rev. E 74, 017701 (2006)CrossRef
151.
Zurück zum Zitat Peng, C., Teng, Y., Hwang, B., et al.: Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Comput. Math. Appl. 72, 349–374 (2016)MathSciNetMATHCrossRef Peng, C., Teng, Y., Hwang, B., et al.: Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Comput. Math. Appl. 72, 349–374 (2016)MathSciNetMATHCrossRef
152.
Zurück zum Zitat Bouzidi, M., Firdaouss, M., Lallemand, P., et al.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452–3459 (2001)MATHCrossRef Bouzidi, M., Firdaouss, M., Lallemand, P., et al.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452–3459 (2001)MATHCrossRef
153.
154.
Zurück zum Zitat Mei, R., Luo, L.-S., Shyy, W., et al.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155, 307–330 (1999)MATHCrossRef Mei, R., Luo, L.-S., Shyy, W., et al.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155, 307–330 (1999)MATHCrossRef
155.
Zurück zum Zitat Mei, R., Shyy, W., Yu, D., et al.: Lattice Boltzmann method for 3-D flows with curved boundary. J. Comput. Phys. 161, 680–699 (2000)MATHCrossRef Mei, R., Shyy, W., Yu, D., et al.: Lattice Boltzmann method for 3-D flows with curved boundary. J. Comput. Phys. 161, 680–699 (2000)MATHCrossRef
156.
Zurück zum Zitat Chun, B., Ladd, A.: Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys. Rev. E 75, 066705 (2007)MathSciNetCrossRef Chun, B., Ladd, A.: Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys. Rev. E 75, 066705 (2007)MathSciNetCrossRef
157.
Zurück zum Zitat Tao, S., Guo, Z., Wang, L.-P., et al.: Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian fluid. Powder Technol. 315, 126–138 (2017)CrossRef Tao, S., Guo, Z., Wang, L.-P., et al.: Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian fluid. Powder Technol. 315, 126–138 (2017)CrossRef
158.
Zurück zum Zitat Wen, B., Zhang, C., Fang, H., et al.: Hydrodynamic force evaluation by momentum exchange method in lattice Boltzmann simulations. Entropy 17, 8240–8266 (2015)CrossRef Wen, B., Zhang, C., Fang, H., et al.: Hydrodynamic force evaluation by momentum exchange method in lattice Boltzmann simulations. Entropy 17, 8240–8266 (2015)CrossRef
159.
Zurück zum Zitat Mei, R., Yu, D., Shyy, W., et al.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 65, 041203 (2002)CrossRef Mei, R., Yu, D., Shyy, W., et al.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 65, 041203 (2002)CrossRef
160.
Zurück zum Zitat Clausen, J.R., Aidun, C.K.: Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Int. J. Multiph. Flow 35, 307–311 (2009)CrossRef Clausen, J.R., Aidun, C.K.: Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Int. J. Multiph. Flow 35, 307–311 (2009)CrossRef
161.
Zurück zum Zitat Chen, Y., Cai, Q., Xia, Z., et al.: Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions. Phys. Rev. E 88, 013303 (2013)CrossRef Chen, Y., Cai, Q., Xia, Z., et al.: Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions. Phys. Rev. E 88, 013303 (2013)CrossRef
162.
Zurück zum Zitat Wen, B., Zhang, C., Tu, Y., et al.: Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266, 161–170 (2014)MathSciNetMATHCrossRef Wen, B., Zhang, C., Tu, Y., et al.: Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266, 161–170 (2014)MathSciNetMATHCrossRef
163.
Zurück zum Zitat Xu, A., Zhao, T., Shi, L., et al.: Three-dimensional lattice Boltzmann simulation of suspensions containing both micro- and nanoparticles. Int. J. Heat Fluid Flow 62, 560–567 (2016)CrossRef Xu, A., Zhao, T., Shi, L., et al.: Three-dimensional lattice Boltzmann simulation of suspensions containing both micro- and nanoparticles. Int. J. Heat Fluid Flow 62, 560–567 (2016)CrossRef
164.
Zurück zum Zitat Peng, C., Geneva, N., Guo, Z., et al.: Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method. Phys. Rev. E 95, 013301 (2017) Peng, C., Geneva, N., Guo, Z., et al.: Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method. Phys. Rev. E 95, 013301 (2017)
165.
Zurück zum Zitat Feng, Z.-G., Michaelides, E.E.: The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J. Comput. Phys. 195, 602–628 (2004)MATHCrossRef Feng, Z.-G., Michaelides, E.E.: The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J. Comput. Phys. 195, 602–628 (2004)MATHCrossRef
166.
167.
Zurück zum Zitat Xia, Z., Connington, K.W., Rapaka, S., et al.: Flow patterns in the sedimentation of an elliptical particle. J. Fluid Mech. 625, 249–272 (2009)MATHCrossRef Xia, Z., Connington, K.W., Rapaka, S., et al.: Flow patterns in the sedimentation of an elliptical particle. J. Fluid Mech. 625, 249–272 (2009)MATHCrossRef
168.
Zurück zum Zitat Tao, S., Hu, J., Guo, Z., et al.: An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows. Comput. Fluids 133, 1–14 (2016) Tao, S., Hu, J., Guo, Z., et al.: An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows. Comput. Fluids 133, 1–14 (2016)
169.
Zurück zum Zitat Hu, J., Tao, S., Guo, Z., et al.: An efficient unified iterative scheme for moving boundaries in lattice Boltzmann method. Comput. Fluids 144, 34–43 (2017)MathSciNetCrossRef Hu, J., Tao, S., Guo, Z., et al.: An efficient unified iterative scheme for moving boundaries in lattice Boltzmann method. Comput. Fluids 144, 34–43 (2017)MathSciNetCrossRef
170.
Zurück zum Zitat Wang, L.-P., Peng, C., Guo, Z., et al.: Lattice Boltzmann simulation of particle-laden turbulent channel flow. Comput. Fluids 124, 226–236 (2016)MathSciNetCrossRef Wang, L.-P., Peng, C., Guo, Z., et al.: Lattice Boltzmann simulation of particle-laden turbulent channel flow. Comput. Fluids 124, 226–236 (2016)MathSciNetCrossRef
171.
Zurück zum Zitat Niu, X.-D., Munekata, T., Hyodo, S.-A., et al.: An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. J. Power Sources 172, 542–552 (2007)CrossRef Niu, X.-D., Munekata, T., Hyodo, S.-A., et al.: An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. J. Power Sources 172, 542–552 (2007)CrossRef
172.
Zurück zum Zitat Sinha, P.K., Mukherjee, P.P., Wang, C.-Y., et al.: Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells. J. Mater. Chem. 17, 3089–3103 (2007) Sinha, P.K., Mukherjee, P.P., Wang, C.-Y., et al.: Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells. J. Mater. Chem. 17, 3089–3103 (2007)
173.
Zurück zum Zitat Hao, L., Cheng, P.: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. J. Power Sources 195, 3870–3881 (2010)CrossRef Hao, L., Cheng, P.: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. J. Power Sources 195, 3870–3881 (2010)CrossRef
174.
Zurück zum Zitat Hao, L., Cheng, P.: Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method. Int. J. Heat Mass Transf. 53, 1908–1913 (2010)MATHCrossRef Hao, L., Cheng, P.: Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method. Int. J. Heat Mass Transf. 53, 1908–1913 (2010)MATHCrossRef
175.
Zurück zum Zitat Chen, L., Luan, H.-B., He, Y.-L., et al.: Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int. J. Therm. Sci. 51, 132–144 (2012)CrossRef Chen, L., Luan, H.-B., He, Y.-L., et al.: Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int. J. Therm. Sci. 51, 132–144 (2012)CrossRef
176.
Zurück zum Zitat Hao, L., Cheng, P.: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel. J. Power Sources 190, 435–446 (2009)CrossRef Hao, L., Cheng, P.: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel. J. Power Sources 190, 435–446 (2009)CrossRef
177.
Zurück zum Zitat Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)MATHCrossRef Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)MATHCrossRef
179.
Zurück zum Zitat Badalassi, V., Ceniceros, H., Banerjee, S., et al.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371–397 (2003)MathSciNetMATHCrossRef Badalassi, V., Ceniceros, H., Banerjee, S., et al.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371–397 (2003)MathSciNetMATHCrossRef
180.
Zurück zum Zitat Qiu, G., Joshi, A.S., Dennison, C., et al.: 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery. Electrochim. Acta 64, 46–64 (2012)CrossRef Qiu, G., Joshi, A.S., Dennison, C., et al.: 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery. Electrochim. Acta 64, 46–64 (2012)CrossRef
181.
Zurück zum Zitat Qiu, G., Dennison, C., Knehr, K., et al.: Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries. J. Power Sources 219, 223–234 (2012)CrossRef Qiu, G., Dennison, C., Knehr, K., et al.: Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries. J. Power Sources 219, 223–234 (2012)CrossRef
182.
Zurück zum Zitat Chen, R., Zhao, T., Yang, W., et al.: Two-dimensional two-phase thermal model for passive direct methanol fuel cells. J. Power Sources 175, 276–287 (2008)CrossRef Chen, R., Zhao, T., Yang, W., et al.: Two-dimensional two-phase thermal model for passive direct methanol fuel cells. J. Power Sources 175, 276–287 (2008)CrossRef
Metadaten
Titel
Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries
verfasst von
Ao Xu
Wei Shyy
Tianshou Zhao
Publikationsdatum
28.04.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2017
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0667-6

Weitere Artikel der Ausgabe 3/2017

Acta Mechanica Sinica 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.