Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2017

28.05.2016

A Simple Approach for Specifying Velocity Inflow Boundary Conditions in Simulations of Turbulent Opposed-Jet Flows

verfasst von: Ranjith R. Tirunagari, Michael W. A. Pettit, Andreas M. Kempf, Stephen B. Pope

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new methodology is developed to specify inflow boundary conditions for the velocity field at the nozzle exit planes in turbulent counterflow simulations. The turbulent counterflow configuration consists of two coaxial opposed nozzles which emit highly-turbulent streams of varying species compositions depending on the mode considered. The specification of velocity inflow boundary conditions at the nozzle exits in the counterflow configuration is non-trivial because of the unique turbulence field generated by the turbulence generating plates (TGPs) upstream of the nozzle exits. In the method presented here, a single large-eddy simulation (LES) is performed in a large domain that spans the region between the TGPs of the nozzles, and the time series of the velocity fields at the nozzle exit planes are recorded. To provide inflow boundary conditions at the nozzle exit planes for simulations under other conditions (e.g., different stream compositions, bulk velocity, TGP location), transformations are performed on the recorded time series: the mean and r.m.s. (root-mean-square) quantities of velocity, as well as the longitudinal integral length scale on the centerline, at the nozzle exits in simulations are matched to those observed in experiments, thereby matching the turbulent Reynolds number R e t . The method is assessed by implementing it in coupled large-eddy simulation/probability density function (LES/PDF) simulations on a small cylindrical domain between the nozzle exit planes for three different modes of the counterflow configuration: N 2 vs. N 2; N 2 vs. hot combustion products; and C H 4/N 2 vs. O 2. The inflow method is found to be successful as the first and second moments of velocity from the LES/PDF simulations agree well with the experimental data on the centerline for all three modes. This simple yet effective inflow strategy can be applied to eliminate the computational cost required to simulate the flow field upstream of the nozzle exits. It is also emphasized that, in addition to the predicted time series data, the availability of experimental data close to the nozzle exit planes plays a key role in the success of this method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kostiuk, L.W., Bray, K.N.C., Chew, T.C.: Premixed turbulent combustion in counterflowing streams. Combust. Sci. Tech. 64, 233–241 (1989)CrossRef Kostiuk, L.W., Bray, K.N.C., Chew, T.C.: Premixed turbulent combustion in counterflowing streams. Combust. Sci. Tech. 64, 233–241 (1989)CrossRef
2.
Zurück zum Zitat Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Extinction and temperature characteristics of turbulent counterflow diffusion flames with partial premixing. Combust. Flame 91, 40–54 (1992)CrossRef Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Extinction and temperature characteristics of turbulent counterflow diffusion flames with partial premixing. Combust. Flame 91, 40–54 (1992)CrossRef
3.
Zurück zum Zitat Kostiuk, L.W., Bray, K.N.C., Cheng, R.K.: Experimental study of premixed turbulent combustion in opposed streams. Part II–reacting flow field and extinction. Combust. Flame 92, 396–409 (1993)CrossRef Kostiuk, L.W., Bray, K.N.C., Cheng, R.K.: Experimental study of premixed turbulent combustion in opposed streams. Part II–reacting flow field and extinction. Combust. Flame 92, 396–409 (1993)CrossRef
4.
Zurück zum Zitat Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES, vol. 143 (2005) Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES, vol. 143 (2005)
5.
Zurück zum Zitat Coppola, G., Coriton, B., A. Gomez.: Highly turbulent counterflow flames: a laboratory scale benchmark for practical systems. Combust. Flame 156, 1834–1843 (2009)CrossRef Coppola, G., Coriton, B., A. Gomez.: Highly turbulent counterflow flames: a laboratory scale benchmark for practical systems. Combust. Flame 156, 1834–1843 (2009)CrossRef
6.
Zurück zum Zitat Gomez, A.: Highly turbulent counterflow flames: a laboratory-scale benchmark for turbulent combustion studies. Technical report fall technical meeting of the Eastern States Section of the Combustion Institute (2011) Gomez, A.: Highly turbulent counterflow flames: a laboratory-scale benchmark for turbulent combustion studies. Technical report fall technical meeting of the Eastern States Section of the Combustion Institute (2011)
7.
Zurück zum Zitat Geipel, P., Goh, K.H.H., Lindstedt, R.P.: Fractal-generated turbulence in opposed jet flows. Flow Turbul. Combust. 85, 397–419 (2010)CrossRefMATH Geipel, P., Goh, K.H.H., Lindstedt, R.P.: Fractal-generated turbulence in opposed jet flows. Flow Turbul. Combust. 85, 397–419 (2010)CrossRefMATH
8.
Zurück zum Zitat Goh, K.H.H., Geipel, P., Lindstedt, R.P.: Lean premixed opposed jet flames in fractal grid generated multiscale turbulence. Combust. Flame 161, 2419–2434 (2014)CrossRef Goh, K.H.H., Geipel, P., Lindstedt, R.P.: Lean premixed opposed jet flames in fractal grid generated multiscale turbulence. Combust. Flame 161, 2419–2434 (2014)CrossRef
9.
Zurück zum Zitat Eckstein, J., Chen, J.Y., Chou, C.P., Janicka, J.: Modeling of turbulent mixing in opposed jet configuration: one-dimensional Monte Carlo probability density function simulation. Proc. Combust. Inst. 28, 141–148 (2000)CrossRef Eckstein, J., Chen, J.Y., Chou, C.P., Janicka, J.: Modeling of turbulent mixing in opposed jet configuration: one-dimensional Monte Carlo probability density function simulation. Proc. Combust. Inst. 28, 141–148 (2000)CrossRef
10.
Zurück zum Zitat Kim, I.S., Mastorakos, E.: Simulations of turbulent non-premixed counterflow flames with first-order conditional moment closure. Flow Turbul. Combust. 76, 133–162 (2006)CrossRefMATH Kim, I.S., Mastorakos, E.: Simulations of turbulent non-premixed counterflow flames with first-order conditional moment closure. Flow Turbul. Combust. 76, 133–162 (2006)CrossRefMATH
11.
Zurück zum Zitat Lindstedt, R.P., Luff, D.S., Whitelaw, J.H.: Velocity fields of fuel lean premixed turbulent opposed jet flames. Proc Combust. Inst. 31, 1459–1466 (2007)CrossRef Lindstedt, R.P., Luff, D.S., Whitelaw, J.H.: Velocity fields of fuel lean premixed turbulent opposed jet flames. Proc Combust. Inst. 31, 1459–1466 (2007)CrossRef
12.
Zurück zum Zitat Pettit, M.W.A., Coriton, B., Gomez, A., Kempf, A.M.: Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows. Proc. Combust. Inst. 33, 1391–1399 (2011)CrossRef Pettit, M.W.A., Coriton, B., Gomez, A., Kempf, A.M.: Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows. Proc. Combust. Inst. 33, 1391–1399 (2011)CrossRef
13.
Zurück zum Zitat Coriton, B., Frank, J.H., Gomez, A.: Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed flames with stoichiometric counterflowing combustion products. Combust. Flame 160, 2442–2456 (2013)CrossRef Coriton, B., Frank, J.H., Gomez, A.: Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed flames with stoichiometric counterflowing combustion products. Combust. Flame 160, 2442–2456 (2013)CrossRef
14.
16.
17.
Zurück zum Zitat Coppola, G., Gomez, A.: Experimental investigation on a turbulence generation system with high-blockage plates. Exp. Therm Fluid Sci. 33, 1037–1048 (2009)CrossRef Coppola, G., Gomez, A.: Experimental investigation on a turbulence generation system with high-blockage plates. Exp. Therm Fluid Sci. 33, 1037–1048 (2009)CrossRef
18.
Zurück zum Zitat Geyer, D., Dreizler, A., Janicka, J., Permana, A.D., Chen, J.Y.: Finite-rate chemistry effects in turbulent opposed flows: comparison of Raman/Rayleigh measurements and Monte Carlo PDF simulations. Proc. Combust. Inst. 30, 711–718 (2005)CrossRef Geyer, D., Dreizler, A., Janicka, J., Permana, A.D., Chen, J.Y.: Finite-rate chemistry effects in turbulent opposed flows: comparison of Raman/Rayleigh measurements and Monte Carlo PDF simulations. Proc. Combust. Inst. 30, 711–718 (2005)CrossRef
19.
Zurück zum Zitat Böhm, B., Stein, O., Kempf, A., Dreizler, A.: In-nozzle measurements of a turbulent opposed jet using PIV. Flow Turb. Combust. 85, 73–93 (2010)CrossRefMATH Böhm, B., Stein, O., Kempf, A., Dreizler, A.: In-nozzle measurements of a turbulent opposed jet using PIV. Flow Turb. Combust. 85, 73–93 (2010)CrossRefMATH
20.
Zurück zum Zitat Stein, O.T., Böhm, B., Dreizler, A., Kempf, A.M.: Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications. Flow Turb. Combust. 87, 425–477 (2011)CrossRefMATH Stein, O.T., Böhm, B., Dreizler, A., Kempf, A.M.: Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications. Flow Turb. Combust. 87, 425–477 (2011)CrossRefMATH
21.
Zurück zum Zitat Kempf, A., Forkel, H., Chen, J.Y., Sadiki, A., Janicka, J.: Large-eddy simulation of a counterflow configuration with and without combustion. Proc. Combust. Inst. 28, 35–40 (2000)CrossRefMATH Kempf, A., Forkel, H., Chen, J.Y., Sadiki, A., Janicka, J.: Large-eddy simulation of a counterflow configuration with and without combustion. Proc. Combust. Inst. 28, 35–40 (2000)CrossRefMATH
23.
Zurück zum Zitat Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1-D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst. 30, 681–689 (2005)CrossRef Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1-D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst. 30, 681–689 (2005)CrossRef
24.
Zurück zum Zitat Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)CrossRefMATH Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)CrossRefMATH
25.
Zurück zum Zitat Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74, 67–84 (2005)CrossRefMATH Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74, 67–84 (2005)CrossRefMATH
26.
Zurück zum Zitat Kempf, A.M., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)MathSciNetCrossRef Kempf, A.M., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)MathSciNetCrossRef
27.
Zurück zum Zitat Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227, 7125–7159 (2008)MathSciNetCrossRefMATH Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227, 7125–7159 (2008)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Wang, H., Pope, S.B.: Large-eddy simulation/probability density function modeling of a turbulent CH 4/H 2/N 2 jet flame. Proc. Combust. Inst. 33, 1319–1330 (2011)CrossRef Wang, H., Pope, S.B.: Large-eddy simulation/probability density function modeling of a turbulent CH 4/H 2/N 2 jet flame. Proc. Combust. Inst. 33, 1319–1330 (2011)CrossRef
29.
Zurück zum Zitat Yang, Y., Wang, H., Pope, S.B., Chen, J.H.: Large-eddy simulation/probability density function modeling of a non-premixed CO/H 2 temporally evolving jet flame. Proc. Combust. Inst. 34, 1241–1249 (2013)CrossRef Yang, Y., Wang, H., Pope, S.B., Chen, J.H.: Large-eddy simulation/probability density function modeling of a non-premixed CO/H 2 temporally evolving jet flame. Proc. Combust. Inst. 34, 1241–1249 (2013)CrossRef
30.
Zurück zum Zitat Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model. 1, 41–63 (1997)MathSciNetCrossRefMATH Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model. 1, 41–63 (1997)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Meneveau, C., Lund, T.S., Cabot, W.H.: A lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)CrossRefMATH Meneveau, C., Lund, T.S., Cabot, W.H.: A lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)CrossRefMATH
32.
Zurück zum Zitat Villermaux, J., Devillon, J.C.: Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un uide par un modèle d’interaction phénoménologique. Elsevier, New York (1972) Villermaux, J., Devillon, J.C.: Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un uide par un modèle d’interaction phénoménologique. Elsevier, New York (1972)
33.
Zurück zum Zitat Tirunagari, R.R., Pope, S.B.: An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods. Combust. Flame 166, 229–242 (2016)CrossRef Tirunagari, R.R., Pope, S.B.: An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods. Combust. Flame 166, 229–242 (2016)CrossRef
34.
Zurück zum Zitat Tirunagari, R.R., Pope, S.B.: Characterization of extinction/reignition events in turbulent premixed counterflow flames using strain-rate analysis. Submitted for publication (2015) Tirunagari, R.R., Pope, S.B.: Characterization of extinction/reignition events in turbulent premixed counterflow flames using strain-rate analysis. Submitted for publication (2015)
36.
Zurück zum Zitat Sung, C.J., Law, C.K., Chen, J.Y.: An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc Combust. Inst. 27, 295–304 (1998)CrossRef Sung, C.J., Law, C.K., Chen, J.Y.: An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc Combust. Inst. 27, 295–304 (1998)CrossRef
Metadaten
Titel
A Simple Approach for Specifying Velocity Inflow Boundary Conditions in Simulations of Turbulent Opposed-Jet Flows
verfasst von
Ranjith R. Tirunagari
Michael W. A. Pettit
Andreas M. Kempf
Stephen B. Pope
Publikationsdatum
28.05.2016
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-016-9743-4

Weitere Artikel der Ausgabe 1/2017

Flow, Turbulence and Combustion 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.