Skip to main content
Erschienen in: Autonomous Robots 5/2020

09.01.2020

Graph search of a moving ground target by a UAV aided by ground sensors with local information

verfasst von: Krishna Kalyanam, David Casbeer, Meir Pachter

Erschienen in: Autonomous Robots | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The optimal control of a UAV searching for a target moving, with known constant speed, on a road network and heading toward one of many goal locations is considered. To aid the UAV, some roads in the network are instrumented with unattended ground sensors (UGSs) that detect the target’s motion and record the time it passes by the UGS. When the UAV flies over an UGS location, this time stamped information, if available, is communicated to it. At time 0, the target enters the road network and selects a path leading to one of the exit nodes. The UAV also arrives at the same entry UGS after some delay and is thus informed about the presence of the target in the network. The UAV has no on-board sensing capability and so, capture entails the UAV and target being colocated at an UGS location. If this happens, the UGS is triggered and this information is instantaneously relayed to the UAV, thereby enabling capture. On the other hand, if the target reaches an exit node without being captured, he is deemed to have escaped. We transform the road network, which is restricted to a directed acyclic graph, into a time tree whose node is a tuple comprising the UGS location and evader arrival time at that location. For a given initial delay, we present a recursive forward search method that computes the minimum capture time UAV pursuit policy, under worst-case target action. The recursion scales poorly in the problem parameters, i.e., number of nodes in the time tree and number of evader paths. We present a novel branch and bound technique and a pre-processing step that is experimentally shown to reduce the computational burden by at least two orders of magnitude. We illustrate the applicability of the proposed pruning methods, which result in no loss in optimality, on a realistic example road network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Başar, T. (2001). Control theory: Twenty-five seminal papers (1932–1981), chap. dual control theory (pp. 181–196). New York: Wiley-IEEE Press. Başar, T. (2001). Control theory: Twenty-five seminal papers (1932–1981), chap. dual control theory (pp. 181–196). New York: Wiley-IEEE Press.
Zurück zum Zitat Carlone, L., Axelrod, A., Karaman, S., & Chowdhary, G. (2018). Handbook of dynamic data driven applications systems, chap. aided optimal search: Data-driven target pursuit from on-demand delayed binary observations (pp. 295–335). Cham: Springer. Carlone, L., Axelrod, A., Karaman, S., & Chowdhary, G. (2018). Handbook of dynamic data driven applications systems, chap. aided optimal search: Data-driven target pursuit from on-demand delayed binary observations (pp. 295–335). Cham: Springer.
Zurück zum Zitat Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4), 299–316.CrossRef Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4), 299–316.CrossRef
Zurück zum Zitat Clarke, N. E. (2009). A witness version of the cops and robber game. Discrete Mathematics, 309(10), 3292–3298.MathSciNetCrossRef Clarke, N. E. (2009). A witness version of the cops and robber game. Discrete Mathematics, 309(10), 3292–3298.MathSciNetCrossRef
Zurück zum Zitat Clarke, N. E., Cos, D., Duffy, C., Dyer, D., Fitzpatrick, S., & Messinger, M. E. (2017). Limited visibility cops and robbers. arXiv:1708.07179 Clarke, N. E., Cos, D., Duffy, C., Dyer, D., Fitzpatrick, S., & Messinger, M. E. (2017). Limited visibility cops and robbers. arXiv:​1708.​07179
Zurück zum Zitat Demirbas, M., Arora, A., & Gouda, M. (2003). Self-stabilizing systems, lecture notes in computer science, vol. 2704, chap. A pursuer-evader game for sensor networks (pp. 1–16). Berlin: Springer. Demirbas, M., Arora, A., & Gouda, M. (2003). Self-stabilizing systems, lecture notes in computer science, vol. 2704, chap. A pursuer-evader game for sensor networks (pp. 1–16). Berlin: Springer.
Zurück zum Zitat Dereniowski, D., Dyer, D., & Tifenbach, R. (2015). Zero-visibility cops and robber and the pathwidth of a graph. Journal of Combinatorial Optimization, 29(3), 541–564.MathSciNetCrossRef Dereniowski, D., Dyer, D., & Tifenbach, R. (2015). Zero-visibility cops and robber and the pathwidth of a graph. Journal of Combinatorial Optimization, 29(3), 541–564.MathSciNetCrossRef
Zurück zum Zitat Dumitrescu, A., Kok, H., Suzuki, I., & Zylinski, P. (2010). Vision-based pursuit-evasion in a grid. SIAM Journal of Discrete Mathematics, 24(3), 1177–1204.MathSciNetCrossRef Dumitrescu, A., Kok, H., Suzuki, I., & Zylinski, P. (2010). Vision-based pursuit-evasion in a grid. SIAM Journal of Discrete Mathematics, 24(3), 1177–1204.MathSciNetCrossRef
Zurück zum Zitat Dzyubenko, G. T., & Pshenichnyi, B. N. (1972). Discrete differential games with information lag. Cybernetics and Systems Analysis, 8(6), 947–952. Dzyubenko, G. T., & Pshenichnyi, B. N. (1972). Discrete differential games with information lag. Cybernetics and Systems Analysis, 8(6), 947–952.
Zurück zum Zitat Fomin, F. V., & Thilikos, D. M. (2008). An annotated bibliography on guaranteed graph searching. Theoretical Computer Science, 399(3), 236–245.MathSciNetCrossRef Fomin, F. V., & Thilikos, D. M. (2008). An annotated bibliography on guaranteed graph searching. Theoretical Computer Science, 399(3), 236–245.MathSciNetCrossRef
Zurück zum Zitat Isler, V., & Karnad, N. (2008). The role of information in cop-robber game. Theoretical Computer Science, 399(3), 179–190.MathSciNetCrossRef Isler, V., & Karnad, N. (2008). The role of information in cop-robber game. Theoretical Computer Science, 399(3), 179–190.MathSciNetCrossRef
Zurück zum Zitat Krishnamoorthy, K., Casbeer, D. W., & Pachter, M. (2015). Minimum time UAV pursuit of a moving ground target using partial information. In International conference on unmanned aircraft systems (ICUAS) (pp. 204–208). Denver, CO. Krishnamoorthy, K., Casbeer, D. W., & Pachter, M. (2015). Minimum time UAV pursuit of a moving ground target using partial information. In International conference on unmanned aircraft systems (ICUAS) (pp. 204–208). Denver, CO.
Zurück zum Zitat Krishnamoorthy, K., Darbha, S., Khargonekar, P., Casbeer, D. W., Chandler, P., & Pachter, M. (2013a). Optimal minimax pursuit evasion on a Manhattan grid. In American control conference (pp. 3427–3434). Wasington, DC. Krishnamoorthy, K., Darbha, S., Khargonekar, P., Casbeer, D. W., Chandler, P., & Pachter, M. (2013a). Optimal minimax pursuit evasion on a Manhattan grid. In American control conference (pp. 3427–3434). Wasington, DC.
Zurück zum Zitat Krishnamoorthy, K., Darbha, S., Khargonekar, P., Chandler, P., & Pachter, M. (2013b). Optimal cooperative pursuit on a Manhattan grid. In AIAA guidance, navigation and control conference, AIAA 2013-4633. Boston, MA Krishnamoorthy, K., Darbha, S., Khargonekar, P., Chandler, P., & Pachter, M. (2013b). Optimal cooperative pursuit on a Manhattan grid. In AIAA guidance, navigation and control conference, AIAA 2013-4633. Boston, MA
Zurück zum Zitat Parsons, T. D. (1978). Pursuit-evasion in a graph, lecture notes in mathematics (vol. 642, pp. 426–441). Berlin: Springer. Parsons, T. D. (1978). Pursuit-evasion in a graph, lecture notes in mathematics (vol. 642, pp. 426–441). Berlin: Springer.
Zurück zum Zitat Rasmussen, S., Krishnamoorthy, K., & Kingston, D. (2016). Field experiment of a fully autonomous multiple UAV/UGS intruder detection and monitoring system. In International conference on unmanned aircraft systems (pp. 1293–1302). Arlington, VA. https://doi.org/10.1109/ICUAS.2016.7502563. Rasmussen, S., Krishnamoorthy, K., & Kingston, D. (2016). Field experiment of a fully autonomous multiple UAV/UGS intruder detection and monitoring system. In International conference on unmanned aircraft systems (pp. 1293–1302). Arlington, VA. https://​doi.​org/​10.​1109/​ICUAS.​2016.​7502563.
Zurück zum Zitat Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S., & Sastry, S. (2003). Distributed control applications within sensor networks. Proceedings of the IEEE, 91(8), 1235–1246.CrossRef Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S., & Sastry, S. (2003). Distributed control applications within sensor networks. Proceedings of the IEEE, 91(8), 1235–1246.CrossRef
Zurück zum Zitat Sugihara, K., & Suzuki, I. (1989). Optimal algorithms for a pursuit-evasion problem in grids. SIAM Journal of Discrete Mathematics, 2(1), 126–143.MathSciNetCrossRef Sugihara, K., & Suzuki, I. (1989). Optimal algorithms for a pursuit-evasion problem in grids. SIAM Journal of Discrete Mathematics, 2(1), 126–143.MathSciNetCrossRef
Zurück zum Zitat Sundaram, S., Krishnamoorthy, K., & Casbeer, D. (2017). Pursuit on a graph under partial information from sensors. In American control conference (pp. 4279–4284). Seattle, WA. Sundaram, S., Krishnamoorthy, K., & Casbeer, D. (2017). Pursuit on a graph under partial information from sensors. In American control conference (pp. 4279–4284). Seattle, WA.
Zurück zum Zitat Vieira, M. A. M., Govindan, R., & Sukhatme, G. S. (2009). Scalable and practical pursuit-evasion with networked robots. Intelligent Service Robotics, 2(4), 247–263.CrossRef Vieira, M. A. M., Govindan, R., & Sukhatme, G. S. (2009). Scalable and practical pursuit-evasion with networked robots. Intelligent Service Robotics, 2(4), 247–263.CrossRef
Metadaten
Titel
Graph search of a moving ground target by a UAV aided by ground sensors with local information
verfasst von
Krishna Kalyanam
David Casbeer
Meir Pachter
Publikationsdatum
09.01.2020
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 5/2020
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-019-09900-0

Weitere Artikel der Ausgabe 5/2020

Autonomous Robots 5/2020 Zur Ausgabe

Neuer Inhalt