Skip to main content
Erschienen in: Cellulose 3/2012

01.06.2012 | Original Paper

Adding value to the Brazilian sisal: acid hydrolysis of its pulp seeking production of sugars and materials

verfasst von: Mauricio P. de Paula, Talita M. Lacerda, Márcia D. Zambon, Elisabete Frollini

Erschienen in: Cellulose | Ausgabe 3/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work is inserted into the broad context of the upgrading of lignocellulosic fibers. Sisal was chosen in the present study because more than 50% of the world’s sisal is cultivated in Brazil, it has a short life cycle and its fiber has a high cellulose content. Specifically, in the present study, the subject addressed was the hydrolysis of the sisal pulp, using sulfuric acid as the catalyst. To assess the influence of parameters such as the concentration of the sulfuric acid and the temperature during this process, the pulp was hydrolyzed with various concentrations of sulfuric acid (30–50%) at 70 °C and with 30% acid (v/v) at various temperatures (60–100 °C). During hydrolysis, aliquots were withdrawn from the reaction media, and the solid (non-hydrolyzed pulp) was separated from the liquid (liquor) by filtering each aliquot. The sugar composition of the liquor was analyzed by HPLC, and the non-hydrolyzed pulps were characterized by viscometry (average molar mass), and X-ray diffraction (crystallinity). The results support the following conclusions: acid hydrolysis using 30% H2SO4 at 100 °C can produce sisal microcrystalline cellulose and the conditions that led to the largest glucose yield and lowest decomposition rate were 50% H2SO4 at 70 °C. In summary, the study of sisal pulp hydrolysis using concentrated acid showed that certain conditions are suitable for high recovery of xylose and good yield of glucose. Moreover, the unreacted cellulose can be targeted for different applications in bio-based materials. A kinetic study based on the glucose yield was performed for all reaction conditions using the kinetic model proposed by Saeman. The results showed that the model adjusted to all 30–35% H2SO4 reactions but not to greater concentrations of sulfuric acid. The present study is part of an ongoing research program, and the results reported here will be used as a comparison against the results obtained when using treated sisal pulp as the starting material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aguilar R, Ramirez JA, Garrote G, Vazquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318CrossRef Aguilar R, Ramirez JA, Garrote G, Vazquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318CrossRef
Zurück zum Zitat Almeida EVR, Frollini E, Castellan A, Coma V (2010) Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydr Polym 80:655–664CrossRef Almeida EVR, Frollini E, Castellan A, Coma V (2010) Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydr Polym 80:655–664CrossRef
Zurück zum Zitat Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRef Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRef
Zurück zum Zitat Botaro VR, Siqueira G, Megiatto JD Jr, Frollini E (2010) Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic matrix. J Appl Polym Sci 115:269–276CrossRef Botaro VR, Siqueira G, Megiatto JD Jr, Frollini E (2010) Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic matrix. J Appl Polym Sci 115:269–276CrossRef
Zurück zum Zitat Browning BL (1967) Methods of wood chemistry. Interscience, New York Browning BL (1967) Methods of wood chemistry. Interscience, New York
Zurück zum Zitat Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibres. J Appl Polym Sci 45:967–979CrossRef Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibres. J Appl Polym Sci 45:967–979CrossRef
Zurück zum Zitat Camacho F, Gonzálles-Tello P, Jurado E, Robles A (1996) Microcrystalline-cellulose hydrolysis with concentrated sulfuric acid. J Chem Technol Biotechnol 67:350–356CrossRef Camacho F, Gonzálles-Tello P, Jurado E, Robles A (1996) Microcrystalline-cellulose hydrolysis with concentrated sulfuric acid. J Chem Technol Biotechnol 67:350–356CrossRef
Zurück zum Zitat Cerveró JM, Skovgaard PA, Felby C, Sorensen HR, Jorgensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microb Technol 46:177–184CrossRef Cerveró JM, Skovgaard PA, Felby C, Sorensen HR, Jorgensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microb Technol 46:177–184CrossRef
Zurück zum Zitat Cho DH, Shin SJ, Bae Y, Park C, Kim YH (2011) Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour Technol 102:4439–4443CrossRef Cho DH, Shin SJ, Bae Y, Park C, Kim YH (2011) Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour Technol 102:4439–4443CrossRef
Zurück zum Zitat Ciacco GT, Morgado DL, Frollini E, Possidonio S, El Seoud AO (2010) Some aspects of acetylation of untreated and mercerized sisal cellulose. J Braz Chem Soc 21:71–77CrossRef Ciacco GT, Morgado DL, Frollini E, Possidonio S, El Seoud AO (2010) Some aspects of acetylation of untreated and mercerized sisal cellulose. J Braz Chem Soc 21:71–77CrossRef
Zurück zum Zitat Corrêa AC, Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curauá fibers. Cellulose 17:1183–1192CrossRef Corrêa AC, Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curauá fibers. Cellulose 17:1183–1192CrossRef
Zurück zum Zitat Costa ACA, Junior NP, Aranda DAG (2010) The situation of biofuels in Brazil: new generation technologies. Renew Sustain Energy Rev 14:3041–3049CrossRef Costa ACA, Junior NP, Aranda DAG (2010) The situation of biofuels in Brazil: new generation technologies. Renew Sustain Energy Rev 14:3041–3049CrossRef
Zurück zum Zitat Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28CrossRef Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28CrossRef
Zurück zum Zitat Dias MOS, Ensinas AV, Nebra SA, Maciel Filho R, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87:1206–1216CrossRef Dias MOS, Ensinas AV, Nebra SA, Maciel Filho R, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87:1206–1216CrossRef
Zurück zum Zitat Ferreira S, Gil N, Queiroz JA, Duarte AP, Domingues FC (2011) An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour Technol 102:4766–4773CrossRef Ferreira S, Gil N, Queiroz JA, Duarte AP, Domingues FC (2011) An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour Technol 102:4766–4773CrossRef
Zurück zum Zitat Garves K (1996) Temperature, salt, and acidity effects on the hydrolysis of cellulose dissolved in concentrated acids. Cell Chem Technol 30:3–12 Garves K (1996) Temperature, salt, and acidity effects on the hydrolysis of cellulose dissolved in concentrated acids. Cell Chem Technol 30:3–12
Zurück zum Zitat Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36:84–89CrossRef Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36:84–89CrossRef
Zurück zum Zitat Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241 Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241
Zurück zum Zitat Graf A, Koehler T (2000) Oregon: cellulose-ethanol study. Oregon Office of Energy, USA Graf A, Koehler T (2000) Oregon: cellulose-ethanol study. Oregon Office of Energy, USA
Zurück zum Zitat Gremos S, Zarafeta D, Kekos D, Kolisis F (2011) Direct enzymatic acylation of cellulose pretreated in BMIMCl ionic liquid. Bioresour Technol 102:1378–1382CrossRef Gremos S, Zarafeta D, Kekos D, Kolisis F (2011) Direct enzymatic acylation of cellulose pretreated in BMIMCl ionic liquid. Bioresour Technol 102:1378–1382CrossRef
Zurück zum Zitat Hall M, Bansal P, Lee HJ, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRef Hall M, Bansal P, Lee HJ, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRef
Zurück zum Zitat Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568CrossRef Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568CrossRef
Zurück zum Zitat Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46CrossRef Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46CrossRef
Zurück zum Zitat Lacerda TM, de Paula MP, Zambon M, Frollini E (2012) Saccharification of Brazilian sisal pulp: evaluating the impact of mercerization on non-hydrolyzed pulp and hydrolysis products. Cellulose 19:351–362CrossRef Lacerda TM, de Paula MP, Zambon M, Frollini E (2012) Saccharification of Brazilian sisal pulp: evaluating the impact of mercerization on non-hydrolyzed pulp and hydrolysis products. Cellulose 19:351–362CrossRef
Zurück zum Zitat Lenihan P, Orozco A, O’neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403CrossRef Lenihan P, Orozco A, O’neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403CrossRef
Zurück zum Zitat Lima GDM, Sierakowski M-R, Faria-Tischer PCS, Tischer CA (2011) Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride. Mater Sci Eng, C 31:190–197CrossRef Lima GDM, Sierakowski M-R, Faria-Tischer PCS, Tischer CA (2011) Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride. Mater Sci Eng, C 31:190–197CrossRef
Zurück zum Zitat Megiatto JD Jr, Hoareau W, Gardrat C, Frollini E, Castellan A (2007) Sisal fibers: surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and lignin as model study. J Agric Food Chem 55:8576–8584CrossRef Megiatto JD Jr, Hoareau W, Gardrat C, Frollini E, Castellan A (2007) Sisal fibers: surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and lignin as model study. J Agric Food Chem 55:8576–8584CrossRef
Zurück zum Zitat Megiatto JD Jr, Silva CG, Ramires EC, Frollini E (2009) Thermoset matrix reinforced with sisal fibers: effect of the cure cycle on the properties of the biobased composite. Polym Test 28:793–800CrossRef Megiatto JD Jr, Silva CG, Ramires EC, Frollini E (2009) Thermoset matrix reinforced with sisal fibers: effect of the cure cycle on the properties of the biobased composite. Polym Test 28:793–800CrossRef
Zurück zum Zitat Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18:699–712CrossRef Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18:699–712CrossRef
Zurück zum Zitat Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17:474–480CrossRef Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17:474–480CrossRef
Zurück zum Zitat Najafpour G, Ideris A, Salmanpour S, Norouzi M (2007) Acid hydrolysis of pretreated palm lignocellulosic wastes. Int J Eng Transact B Appl 20:147–156 Najafpour G, Ideris A, Salmanpour S, Norouzi M (2007) Acid hydrolysis of pretreated palm lignocellulosic wastes. Int J Eng Transact B Appl 20:147–156
Zurück zum Zitat Pandey JK, Lee CS, Ahn SH (2010) Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers. J Appl Polym Sci 115:2493–2501CrossRef Pandey JK, Lee CS, Ahn SH (2010) Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers. J Appl Polym Sci 115:2493–2501CrossRef
Zurück zum Zitat Pouget JP, Józefowicz ME, Epstein JA, Tang X, Macdiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24:779–789CrossRef Pouget JP, Józefowicz ME, Epstein JA, Tang X, Macdiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24:779–789CrossRef
Zurück zum Zitat Ramires EC, Megiatto JD Jr, Gardrat C, Castellan A, Frollini E (2010) Biobased composites from glyoxal-phenolic resins and sisal fibers. Bioresour Technol 101:1998–2006CrossRef Ramires EC, Megiatto JD Jr, Gardrat C, Castellan A, Frollini E (2010) Biobased composites from glyoxal-phenolic resins and sisal fibers. Bioresour Technol 101:1998–2006CrossRef
Zurück zum Zitat Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supra-molecular structure and physico-chemical properties of cellulose on its dissolution in the lithium chloride/N, N-dimethylacetamide solvent system. Biomacromolecules 6:2638–2647CrossRef Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supra-molecular structure and physico-chemical properties of cellulose on its dissolution in the lithium chloride/N, N-dimethylacetamide solvent system. Biomacromolecules 6:2638–2647CrossRef
Zurück zum Zitat Ramos LA, Morgado DL, El Seoud OA, Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392CrossRef Ramos LA, Morgado DL, El Seoud OA, Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392CrossRef
Zurück zum Zitat Rodrigues FA, Guirardello R (2008) Evaluation of a sugarcane bagasse acid hydrolysis technology. Chem Eng Technol 31:883–892CrossRef Rodrigues FA, Guirardello R (2008) Evaluation of a sugarcane bagasse acid hydrolysis technology. Chem Eng Technol 31:883–892CrossRef
Zurück zum Zitat Romero I, Ruiz E, Castro E, Moya M (2010) Acid hydrolysis of olive tree biomass. Chem Eng Res Des 88:633–640CrossRef Romero I, Ruiz E, Castro E, Moya M (2010) Acid hydrolysis of olive tree biomass. Chem Eng Res Des 88:633–640CrossRef
Zurück zum Zitat Saeman JF, Bubl JL, Harris EE (1945) Quantitative saccharification of wood and cellulose. J Ind Eng Chem 17:35–37 Saeman JF, Bubl JL, Harris EE (1945) Quantitative saccharification of wood and cellulose. J Ind Eng Chem 17:35–37
Zurück zum Zitat Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef
Zurück zum Zitat Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proceedings of the national academy of sciences of the United States of America, January 15, 105:464–469 Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proceedings of the national academy of sciences of the United States of America, January 15, 105:464–469
Zurück zum Zitat Silva NLC, Betancur GJV, Vasquez MP, Gomes EB, Pereira N Jr (2011) Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Appl Biochem Biotechnol 163:928–936CrossRef Silva NLC, Betancur GJV, Vasquez MP, Gomes EB, Pereira N Jr (2011) Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Appl Biochem Biotechnol 163:928–936CrossRef
Zurück zum Zitat Siqueira G, Tapin-Lingua S, Bras J, Perez DS, Dufresne A (2011) Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 18:57–65CrossRef Siqueira G, Tapin-Lingua S, Bras J, Perez DS, Dufresne A (2011) Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 18:57–65CrossRef
Zurück zum Zitat Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
Zurück zum Zitat TAPPI PRESS (2001) Alpha-cellulose in paper T429 cm-01 TAPPI PRESS (2001) Alpha-cellulose in paper T429 cm-01
Zurück zum Zitat TAPPI PRESS (2008) Viscosity of pulp (capillary viscometer method) T230 om-08 TAPPI PRESS (2008) Viscosity of pulp (capillary viscometer method) T230 om-08
Zurück zum Zitat Téllez-Luis SJ, Ramirez JA, Vazquez M (2002) Modelling of the hydrolysis of sorghum straw at atmospheric pressure. J Sci Food Agric 82:505–512CrossRef Téllez-Luis SJ, Ramirez JA, Vazquez M (2002) Modelling of the hydrolysis of sorghum straw at atmospheric pressure. J Sci Food Agric 82:505–512CrossRef
Zurück zum Zitat Tian J, Wang J, Zhao S, Jiang C, Zhang X, Wang X (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17:587–594CrossRef Tian J, Wang J, Zhao S, Jiang C, Zhang X, Wang X (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17:587–594CrossRef
Zurück zum Zitat Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123CrossRef Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123CrossRef
Zurück zum Zitat Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Ann Rev Energy Environ 24:189–226CrossRef Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Ann Rev Energy Environ 24:189–226CrossRef
Zurück zum Zitat Xiang Q, Kim JS, Lee YY (2003) A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 105–108:337–352CrossRef Xiang Q, Kim JS, Lee YY (2003) A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 105–108:337–352CrossRef
Zurück zum Zitat Xiang Q, Lee YY, Torget RW (2004) Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl Biochem Biotechnol 113–116:1127–1138CrossRef Xiang Q, Lee YY, Torget RW (2004) Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl Biochem Biotechnol 113–116:1127–1138CrossRef
Metadaten
Titel
Adding value to the Brazilian sisal: acid hydrolysis of its pulp seeking production of sugars and materials
verfasst von
Mauricio P. de Paula
Talita M. Lacerda
Márcia D. Zambon
Elisabete Frollini
Publikationsdatum
01.06.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9674-8

Weitere Artikel der Ausgabe 3/2012

Cellulose 3/2012 Zur Ausgabe