Skip to main content
Erschienen in: Cellulose 6/2012

01.12.2012 | Original Paper

Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan

verfasst von: Natanya M. L. Hansen, Thomas O. J. Blomfeldt, Mikael S. Hedenqvist, David V. Plackett

Erschienen in: Cellulose | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Xylans, an important sub-class of hemicelluloses, represent a largely untapped resource for new renewable materials derived from biomass. As with other carbohydrates, nanocellulose reinforcement of xylans is interesting as a route to new bio-materials. With this in mind, birch wood xylan was combined with nanofibrillated cellulose (NFC) and films were cast with and without glycerol, sorbitol or methoxypolyethylene glycol (MPEG) as plasticizers. Microscopy revealed some NFC agglomeration in the composite films as well as a layered nanocellulose structure. Equilibrium moisture content in plasticized films increased with glycerol content but was independent of xylan:NFC ratio in unplasticized films. Sorbitol- and MPEG-plasticized films showed equilibrium moisture contents of approximately 10 wt% independent of plasticizer content. Tensile testing revealed increases in tensile strength with increased NFC content in the xylan:NFC composition range from 50:50 to 80:20 and plasticizer addition generally provided less brittle films. The oxygen permeability of unplasticized xylan-NFC films fell into a range which was similar to that for previously measured pure NFC films and was statistically independent of the xylan:NFC ratio. Water vapor permeability values of 1.9–2.8·10−11 g Pa−1 m−1 s−1 were found for unplasticized composite films, but these values were significantly reduced in the case of films plasticized with 10–40 wt% sorbitol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Units recalculated from the original paper—original units: g mm kPa−1 m−2 day−1.
 
2
Units recalculated from the original paper—original units: mol H2O m Pa−1 m−2 s−1.
 
Literatur
Zurück zum Zitat Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969CrossRef Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969CrossRef
Zurück zum Zitat Albertsson A-C, Edlund U, Varma IK (2011) Synthesis, chemistry and properties of hemicelluloses. Chapter 7. In: Plackett D (ed) Biopolymers—new materials for sustainable films and coatings. Wiley, Chichester Albertsson A-C, Edlund U, Varma IK (2011) Synthesis, chemistry and properties of hemicelluloses. Chapter 7. In: Plackett D (ed) Biopolymers—new materials for sustainable films and coatings. Wiley, Chichester
Zurück zum Zitat Allen WR (1986) Structural applications for flexible packaging: innovations in pouch forms and uses. Polym Plast Technol Eng 25:295–320CrossRef Allen WR (1986) Structural applications for flexible packaging: innovations in pouch forms and uses. Polym Plast Technol Eng 25:295–320CrossRef
Zurück zum Zitat Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRef Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRef
Zurück zum Zitat Avérous L, Fringant C, Moro L (2001) Plasticized starch-cellulose interactions in polysaccharide composites. Polymer 42:6565–6572CrossRef Avérous L, Fringant C, Moro L (2001) Plasticized starch-cellulose interactions in polysaccharide composites. Polymer 42:6565–6572CrossRef
Zurück zum Zitat Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, Filho GC, Munford MI, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7CrossRef Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, Filho GC, Munford MI, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7CrossRef
Zurück zum Zitat Briston JH (1988) Plastic films, 3rd edn. Wiley, New York Briston JH (1988) Plastic films, 3rd edn. Wiley, New York
Zurück zum Zitat Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721CrossRef Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721CrossRef
Zurück zum Zitat Chen Y, Liu CH, Chang PR, Anderson DP, Huneault MA (2009) Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polym Eng Sci 49:369–378CrossRef Chen Y, Liu CH, Chang PR, Anderson DP, Huneault MA (2009) Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polym Eng Sci 49:369–378CrossRef
Zurück zum Zitat Dammström S, Salmen L, Gatenholm P (2005) The effect of moisture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer 46:10364–10371CrossRef Dammström S, Salmen L, Gatenholm P (2005) The effect of moisture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer 46:10364–10371CrossRef
Zurück zum Zitat Dammström S, Salmen L, Gatenholm P (2009) On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. Bioresources 4:3–14 Dammström S, Salmen L, Gatenholm P (2009) On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. Bioresources 4:3–14
Zurück zum Zitat Duchemin BJC, Newman RH, Staiger MP (2009) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230CrossRef Duchemin BJC, Newman RH, Staiger MP (2009) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230CrossRef
Zurück zum Zitat Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRef Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRef
Zurück zum Zitat Eronen P, Osterberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290CrossRef Eronen P, Osterberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290CrossRef
Zurück zum Zitat Forssell P, Lahtinen R, Lahelin M, Myllarinen P (2002) Oxygen permeability of amylose and amylopectin films. Carbohydr Polym 47:125–129CrossRef Forssell P, Lahtinen R, Lahelin M, Myllarinen P (2002) Oxygen permeability of amylose and amylopectin films. Carbohydr Polym 47:125–129CrossRef
Zurück zum Zitat Goksu EI, Karamanlioglu M, Bakir U, Yilmaz L, Yilmazer U (2007) Production and characterization of films from cotton stalk xylan. J Agric Food Chem 55:10685–10691CrossRef Goksu EI, Karamanlioglu M, Bakir U, Yilmaz L, Yilmazer U (2007) Production and characterization of films from cotton stalk xylan. J Agric Food Chem 55:10685–10691CrossRef
Zurück zum Zitat Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535CrossRef Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535CrossRef
Zurück zum Zitat Gröndahl M, Gustafsson A, Gatenholm P (2006) Gas-phase surface fluorination of arabinoxylan films. Macromolecules 39:2718–2721CrossRef Gröndahl M, Gustafsson A, Gatenholm P (2006) Gas-phase surface fluorination of arabinoxylan films. Macromolecules 39:2718–2721CrossRef
Zurück zum Zitat Han JS, Rowell JS (1997) Chemical composition of fibers. In: Rowell RM, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Press Inc., Boca Raton, pp 83–134 Han JS, Rowell JS (1997) Chemical composition of fibers. In: Rowell RM, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Press Inc., Boca Raton, pp 83–134
Zurück zum Zitat Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicellulose – a review. Biomacromolecules 9:1493–1505CrossRef Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicellulose – a review. Biomacromolecules 9:1493–1505CrossRef
Zurück zum Zitat Harris JM, Chess RB (2003) PEGylation, successful approach to drug delivery. Nat Rev Drug Discov 2:214–221CrossRef Harris JM, Chess RB (2003) PEGylation, successful approach to drug delivery. Nat Rev Drug Discov 2:214–221CrossRef
Zurück zum Zitat Hartman J, Albertsson AC, Lindblad MS, Sjoberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRef Hartman J, Albertsson AC, Lindblad MS, Sjoberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRef
Zurück zum Zitat Hoije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physiochemical and material properties of arabinoxylans from barley husks. Carbohydr Polym 61:266–275CrossRef Hoije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physiochemical and material properties of arabinoxylans from barley husks. Carbohydr Polym 61:266–275CrossRef
Zurück zum Zitat Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026CrossRef Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026CrossRef
Zurück zum Zitat Jean B, Heux L, Dubreuil F, Chambat G, Cousin F (2009) Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers. Langmuir 25:3920–3923CrossRef Jean B, Heux L, Dubreuil F, Chambat G, Cousin F (2009) Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers. Langmuir 25:3920–3923CrossRef
Zurück zum Zitat Katz K, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstidning 87:R48–R53 Katz K, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstidning 87:R48–R53
Zurück zum Zitat Kayserilioglu BS, Bakir U, Yilmaz L, Akkas N (2003) Use of xylan, an agricultural byproduct, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Bioresour Technol 87:239–246CrossRef Kayserilioglu BS, Bakir U, Yilmaz L, Akkas N (2003) Use of xylan, an agricultural byproduct, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Bioresour Technol 87:239–246CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Li Q, Zhou JP, Zhang LN (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci, Part B: Polym Phys 47:1069–1077CrossRef Li Q, Zhou JP, Zhang LN (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci, Part B: Polym Phys 47:1069–1077CrossRef
Zurück zum Zitat Lopez-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727CrossRef Lopez-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727CrossRef
Zurück zum Zitat Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074CrossRef Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074CrossRef
Zurück zum Zitat Mehyar GR, Han JH (2004) Physical and mechanical properties of high-amylose rice and pea starch films as affected by relative humidity and plasticizer. J Food Sci 69:E449–E454CrossRef Mehyar GR, Han JH (2004) Physical and mechanical properties of high-amylose rice and pea starch films as affected by relative humidity and plasticizer. J Food Sci 69:E449–E454CrossRef
Zurück zum Zitat Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja RA, Helen H, Hyvonen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466CrossRef Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja RA, Helen H, Hyvonen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466CrossRef
Zurück zum Zitat Mikkonen KS, Mathew AP, Pirkkalainen K, Serimaa R, Xu C, Willfor S, Oksman K, Tenkanen M (2010) Glucomannan composite films with cellulose nanowhiskers. Cellulose 17:69–81CrossRef Mikkonen KS, Mathew AP, Pirkkalainen K, Serimaa R, Xu C, Willfor S, Oksman K, Tenkanen M (2010) Glucomannan composite films with cellulose nanowhiskers. Cellulose 17:69–81CrossRef
Zurück zum Zitat Mikkonen KS, Stevanic JS, Joly C, Dole P, Pirkkalainen K, Serimaa R, Salmén L, Tenkanen M (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726CrossRef Mikkonen KS, Stevanic JS, Joly C, Dole P, Pirkkalainen K, Serimaa R, Salmén L, Tenkanen M (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726CrossRef
Zurück zum Zitat Mikkonen KS, Heikkila MI, Willfor SM, Tenkanen M (2012a) Films from glyoxal-crosslinked spruce galactogluocomannans plasticized with sorbitol. Int J Polym Sci 2012:8. doi:10.1155/2012/482810 Mikkonen KS, Heikkila MI, Willfor SM, Tenkanen M (2012a) Films from glyoxal-crosslinked spruce galactogluocomannans plasticized with sorbitol. Int J Polym Sci 2012:8. doi:10.​1155/​2012/​482810
Zurück zum Zitat Mikkonen KS, Pitkänen L, Liljeström V, Bergström EM, Serimaa R, Salmén L, Tenkanen M (2012b) Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose. Cellulose 19:467–480CrossRef Mikkonen KS, Pitkänen L, Liljeström V, Bergström EM, Serimaa R, Salmén L, Tenkanen M (2012b) Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose. Cellulose 19:467–480CrossRef
Zurück zum Zitat Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358:67–75CrossRef Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358:67–75CrossRef
Zurück zum Zitat Mondragon M, Arroyo K, Romero-Garcia J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohydr Polym 74:201–208CrossRef Mondragon M, Arroyo K, Romero-Garcia J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohydr Polym 74:201–208CrossRef
Zurück zum Zitat Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429CrossRef Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429CrossRef
Zurück zum Zitat Pandey JK, Singh RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch-Starke 57:8–15CrossRef Pandey JK, Singh RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch-Starke 57:8–15CrossRef
Zurück zum Zitat Peng XW, Ren JL, Zhong LX, Sun RC (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329CrossRef Peng XW, Ren JL, Zhong LX, Sun RC (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329CrossRef
Zurück zum Zitat Phan The D, Debeaufort F, Voilley A, Luu D (2009) Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends. J Food Eng 90:548–558CrossRef Phan The D, Debeaufort F, Voilley A, Luu D (2009) Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends. J Food Eng 90:548–558CrossRef
Zurück zum Zitat Plackett D, Anturi H, Hedenqvist M, Ankerfors M, Lindström T, Siró I (2010) Physical properties and morphology of films prepared from microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 117:3601–3609 Plackett D, Anturi H, Hedenqvist M, Ankerfors M, Lindström T, Siró I (2010) Physical properties and morphology of films prepared from microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 117:3601–3609
Zurück zum Zitat Qi HS, Cai J, Zhang LN, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602CrossRef Qi HS, Cai J, Zhang LN, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602CrossRef
Zurück zum Zitat Rindlav-Westling A, Stading M, Hermansson AM, Gatenholm P (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr Polym 36:217–224CrossRef Rindlav-Westling A, Stading M, Hermansson AM, Gatenholm P (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr Polym 36:217–224CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
Zurück zum Zitat Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F (2007) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281CrossRef Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F (2007) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281CrossRef
Zurück zum Zitat Saxena A, Ragauskas AJ (2009) Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan. Carbohydr Polym 78:357–360CrossRef Saxena A, Ragauskas AJ (2009) Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan. Carbohydr Polym 78:357–360CrossRef
Zurück zum Zitat Saxena A, Elder TJ, Pan S, Ragauskas AJ (2009) Novel nanocellulosic xylan composite films. Compos Part B-Eng 40:727–730CrossRef Saxena A, Elder TJ, Pan S, Ragauskas AJ (2009) Novel nanocellulosic xylan composite films. Compos Part B-Eng 40:727–730CrossRef
Zurück zum Zitat Saxena A, Elder TJ, Ragauskas AJ (2011) Moisture barrier properties of xylan composite films. Carbohydr Polym 84:1371–1377CrossRef Saxena A, Elder TJ, Ragauskas AJ (2011) Moisture barrier properties of xylan composite films. Carbohydr Polym 84:1371–1377CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef
Zurück zum Zitat Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660CrossRef Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119:2652–2660CrossRef
Zurück zum Zitat Sun RC, Sun XF, Tomkinson J (2004) Hemicelluloses and their derivatives. In: Gatenholm P, Tenkanen M (eds) Hemicellulose: science and technology. American Chemical Society, Washington, DC, pp 2–22 Sun RC, Sun XF, Tomkinson J (2004) Hemicelluloses and their derivatives. In: Gatenholm P, Tenkanen M (eds) Hemicellulose: science and technology. American Chemical Society, Washington, DC, pp 2–22
Zurück zum Zitat Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef
Zurück zum Zitat Svagan AJ, Samir MASA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20:1263–1269CrossRef Svagan AJ, Samir MASA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20:1263–1269CrossRef
Zurück zum Zitat van Tuil R, Fowler P, Lawther M, Weber CJ (2000) Properties of biobased packaging. In: Weber CJ (ed) Biobased packaging materials for the food industry—status and perspectives. Department of Dairy and Food Science, KVL, Frederiksberg C, pp 13–44 van Tuil R, Fowler P, Lawther M, Weber CJ (2000) Properties of biobased packaging. In: Weber CJ (ed) Biobased packaging materials for the food industry—status and perspectives. Department of Dairy and Food Science, KVL, Frederiksberg C, pp 13–44
Zurück zum Zitat Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef
Zurück zum Zitat Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviors of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217CrossRef Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviors of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217CrossRef
Zurück zum Zitat Zhang PY, Whistler RL (2004) Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. J Appl Polym Sci 93:2896–2902CrossRef Zhang PY, Whistler RL (2004) Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. J Appl Polym Sci 93:2896–2902CrossRef
Metadaten
Titel
Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan
verfasst von
Natanya M. L. Hansen
Thomas O. J. Blomfeldt
Mikael S. Hedenqvist
David V. Plackett
Publikationsdatum
01.12.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9764-7

Weitere Artikel der Ausgabe 6/2012

Cellulose 6/2012 Zur Ausgabe