Skip to main content
Erschienen in: Cellulose 2/2015

01.04.2015 | Original Paper

The mechanism of cellulose solubilization by urea studied by molecular simulation

verfasst von: Erik Wernersson, Björn Stenqvist, Mikael Lund

Erschienen in: Cellulose | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We used molecular dynamics simulation to model the effect of urea and thiourea on the solvent quality of aqueous solutions with respect to cellulose. A model system consisting of a periodically replicated cellulose molecule of effectively infinite degree of polymerization immersed in aqueous (thio-)urea solution was considered. Kirkwood-Buff theory, which relates the pair distribution functions to the concentration derivatives of the chemical potential, allowed the solubilization effect to be quantified in terms of the preferential binding of urea over water to the cellulose molecule. We found that urea is preferentially adsorbed on the hydrophobic faces of the anhydroglucose rings but has the same affinity as water to the hydroxyl groups. Thus, the simulations suggest that urea acts primarily by mitigating the effect of the hydrophobic portions of the cellulose molecule.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(234):505 Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(234):505
Zurück zum Zitat Almlöf J, Taylor PR (1991) Atomic natural orbital (ano) basis sets for quantum chemical calculations. Adv Quantum Chem 22:301–373CrossRef Almlöf J, Taylor PR (1991) Atomic natural orbital (ano) basis sets for quantum chemical calculations. Adv Quantum Chem 22:301–373CrossRef
Zurück zum Zitat Barone G (1990) Physical chemistry of aqueous solutions of oligosaccharides. Thermochim Acta 162:17–30CrossRef Barone G (1990) Physical chemistry of aqueous solutions of oligosaccharides. Thermochim Acta 162:17–30CrossRef
Zurück zum Zitat Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef
Zurück zum Zitat Bergenstråhle-Wohlert M, Berglund LA, Brady JW, Larsson PT, Westlund P, Wohlert J (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19:1–12CrossRef Bergenstråhle-Wohlert M, Berglund LA, Brady JW, Larsson PT, Westlund P, Wohlert J (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19:1–12CrossRef
Zurück zum Zitat Bolen DW, Rose GD (2008) Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu Rev Biochem 77:339–362CrossRef Bolen DW, Rose GD (2008) Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu Rev Biochem 77:339–362CrossRef
Zurück zum Zitat Bruning W, Holzer A (1961) The effect of urea on hydrophobic bonds: the criticall micelle concentration of n-dodecyltrimethylammonium bromide in aqueous solutions of urea. J Am Chem Soc 83:4865–4866CrossRef Bruning W, Holzer A (1961) The effect of urea on hydrophobic bonds: the criticall micelle concentration of n-dodecyltrimethylammonium bromide in aqueous solutions of urea. J Am Chem Soc 83:4865–4866CrossRef
Zurück zum Zitat Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(014):101 Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(014):101
Zurück zum Zitat Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRef Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRef
Zurück zum Zitat Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189CrossRef Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189CrossRef
Zurück zum Zitat Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579CrossRef Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579CrossRef
Zurück zum Zitat Cai L, Liu Y, Liang H (2012) Impact of hydrogen bonding on inclusion layer of urea to cellulose: study of molecular dynamics simulation. Polymer 53:1124–1130CrossRef Cai L, Liu Y, Liang H (2012) Impact of hydrogen bonding on inclusion layer of urea to cellulose: study of molecular dynamics simulation. Polymer 53:1124–1130CrossRef
Zurück zum Zitat Canchi DR, García AE (2013) Cosolvent effects on protein stability. Annu Rev Phys Chem 64:273–293CrossRef Canchi DR, García AE (2013) Cosolvent effects on protein stability. Annu Rev Phys Chem 64:273–293CrossRef
Zurück zum Zitat Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647CrossRef Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647CrossRef
Zurück zum Zitat Egal M, Budtova T, Navard P (2007) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370CrossRef Egal M, Budtova T, Navard P (2007) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370CrossRef
Zurück zum Zitat Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592CrossRef Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592CrossRef
Zurück zum Zitat Frank HS, Franks F (1968) Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J Chem Phys 48:4746–4757CrossRef Frank HS, Franks F (1968) Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J Chem Phys 48:4746–4757CrossRef
Zurück zum Zitat Gamsjäger H, Lorimer JW, Salomon M, Shaw DG, Tomkins RPT (2010) The IUPAC-NIST solubility data series: a guide to preparation and use of compilations and evaluations (IUPAC technical report). Pure Appl Chem 82:1137–1159CrossRef Gamsjäger H, Lorimer JW, Salomon M, Shaw DG, Tomkins RPT (2010) The IUPAC-NIST solubility data series: a guide to preparation and use of compilations and evaluations (IUPAC technical report). Pure Appl Chem 82:1137–1159CrossRef
Zurück zum Zitat Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598CrossRef Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598CrossRef
Zurück zum Zitat Guinn EJ, Pegram LM, Capp MW, Pollock MN, Record MT Jr (2011) Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc Natl Acad Sci USA 108:16932–16937CrossRef Guinn EJ, Pegram LM, Capp MW, Pollock MN, Record MT Jr (2011) Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc Natl Acad Sci USA 108:16932–16937CrossRef
Zurück zum Zitat Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15:84–90 Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15:84–90
Zurück zum Zitat Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef
Zurück zum Zitat Horinek D, Netz RR (2011) Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations. J Phys Chem A 115:6125–6136CrossRef Horinek D, Netz RR (2011) Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations. J Phys Chem A 115:6125–6136CrossRef
Zurück zum Zitat Hua L, Zhou R, Thirumalai D, Berne BJ (2008) Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc Natl Acad Sci USA 105:16,928–16,933CrossRef Hua L, Zhou R, Thirumalai D, Berne BJ (2008) Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc Natl Acad Sci USA 105:16,928–16,933CrossRef
Zurück zum Zitat Isobe N, Noguchi K, Nishiyama Y, Kimura S, Wada M, Kuga S (2013) Role of urea in alkaline dissolution of cellulose. Cellulose 20:97–103CrossRef Isobe N, Noguchi K, Nishiyama Y, Kimura S, Wada M, Kuga S (2013) Role of urea in alkaline dissolution of cellulose. Cellulose 20:97–103CrossRef
Zurück zum Zitat Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRef Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRef
Zurück zum Zitat Jones MN (1973) Interfacial tension studies at the aqueous urea-n-decane and aqueous urea + surfactant-n-decane interfaces. J Colloid Interface Sci 44:13–20CrossRef Jones MN (1973) Interfacial tension studies at the aqueous urea-n-decane and aqueous urea + surfactant-n-decane interfaces. J Colloid Interface Sci 44:13–20CrossRef
Zurück zum Zitat Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P (2003) Molcas: a program package for computational chemistry. Comput Mater Sci 28(2):222–239CrossRef Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P (2003) Molcas: a program package for computational chemistry. Comput Mater Sci 28(2):222–239CrossRef
Zurück zum Zitat Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63CrossRef Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63CrossRef
Zurück zum Zitat Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions. I. J Chem Phys 19:774–777CrossRef Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions. I. J Chem Phys 19:774–777CrossRef
Zurück zum Zitat Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outierino J, Daniels CR, Foley BL, Woods RJ (2008) Glycam06: a generalizable biomolecular force field. carbohydrates. J Comp Chem 29:622–655CrossRef Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outierino J, Daniels CR, Foley BL, Woods RJ (2008) Glycam06: a generalizable biomolecular force field. carbohydrates. J Comp Chem 29:622–655CrossRef
Zurück zum Zitat Kuharski RA, Rossky PJ (1984) Solvation of hydrophobic species in aqueous urea solution: a molecular dynamics study. J Am Chem Soc 106:5794–5800CrossRef Kuharski RA, Rossky PJ (1984) Solvation of hydrophobic species in aqueous urea solution: a molecular dynamics study. J Am Chem Soc 106:5794–5800CrossRef
Zurück zum Zitat Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRef Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRef
Zurück zum Zitat Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH/thiourea aqueous system at low temperature. Macromol Chem Phys 208:2359–2366CrossRef Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH/thiourea aqueous system at low temperature. Macromol Chem Phys 208:2359–2366CrossRef
Zurück zum Zitat Lue A, Liu Y, Zhang L, Potthas A (2011a) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808CrossRef Lue A, Liu Y, Zhang L, Potthas A (2011a) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808CrossRef
Zurück zum Zitat Lue A, Liu Y, Zhang L, Potthas A (2011b) Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer 52:3857–3864CrossRef Lue A, Liu Y, Zhang L, Potthas A (2011b) Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer 52:3857–3864CrossRef
Zurück zum Zitat Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid In 19:32–40CrossRef Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid In 19:32–40CrossRef
Zurück zum Zitat Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef
Zurück zum Zitat Nozaki Y, Tanford C (1963) The solubility of amino acids and related compounds in aqueous urea solutions. J Biol Chem 238:4074–4081 Nozaki Y, Tanford C (1963) The solubility of amino acids and related compounds in aqueous urea solutions. J Biol Chem 238:4074–4081
Zurück zum Zitat Pegram LM, Record MT Jr (2009) Using surface tension data to predict differences in surface and bulk concentrations of nonelectrolytes in water. J Phys Chem C 113:2171–2174CrossRef Pegram LM, Record MT Jr (2009) Using surface tension data to predict differences in surface and bulk concentrations of nonelectrolytes in water. J Phys Chem C 113:2171–2174CrossRef
Zurück zum Zitat Pharr DY, Fu ZS, Smith TK, Hinze WL (1989) Solubilization of cyclodextrins for analytical applications. Anal Chem 61:275–279CrossRef Pharr DY, Fu ZS, Smith TK, Hinze WL (1989) Solubilization of cyclodextrins for analytical applications. Anal Chem 61:275–279CrossRef
Zurück zum Zitat Pierce V, Kang M, Aburi M, Weerasinghe S, Smith PE (2008) Recent applications of Kirkwood-Buff theory to biological systems. Cell Biochem Biophys 50:1–22CrossRef Pierce V, Kang M, Aburi M, Weerasinghe S, Smith PE (2008) Recent applications of Kirkwood-Buff theory to biological systems. Cell Biochem Biophys 50:1–22CrossRef
Zurück zum Zitat Puzzarini C (2012) Molecular structure of thiourea. J Phy Chem A 116(17):4381–4387CrossRef Puzzarini C (2012) Molecular structure of thiourea. J Phy Chem A 116(17):4381–4387CrossRef
Zurück zum Zitat Qin X, Lu A, Cai J, Zhang L (2013) Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 92:1315–1320CrossRef Qin X, Lu A, Cai J, Zhang L (2013) Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 92:1315–1320CrossRef
Zurück zum Zitat Ramsden W (1902) Some new properties of urea. J Physiol 28:xxiii–xxvi Ramsden W (1902) Some new properties of urea. J Physiol 28:xxiii–xxvi
Zurück zum Zitat Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose/NaOH solutions. Biomacromolecules 4:259–264CrossRef Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose/NaOH solutions. Biomacromolecules 4:259–264CrossRef
Zurück zum Zitat Ruan D, Lue A, Zhang L (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036CrossRef Ruan D, Lue A, Zhang L (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036CrossRef
Zurück zum Zitat Shimizu S, Matubayashi N (2014) Preferential solvation: dividing surface vs excess numbers. J Phys Chem B 118:3922–3930CrossRef Shimizu S, Matubayashi N (2014) Preferential solvation: dividing surface vs excess numbers. J Phys Chem B 118:3922–3930CrossRef
Zurück zum Zitat Smith PE, Mazo RM (2008) On the theory of solute solubility in mixed solvents. J Phys Chem B 112:7875–7884CrossRef Smith PE, Mazo RM (2008) On the theory of solute solubility in mixed solvents. J Phys Chem B 112:7875–7884CrossRef
Zurück zum Zitat Song J, Ge H, Xu M, Chen Q, Zhang L (2014) Study on the interaction between urea and cellulose by combining solid-state 13C CP/MAS NMR and extended Hückel charges. Cellulose 21:4019–4027 Song J, Ge H, Xu M, Chen Q, Zhang L (2014) Study on the interaction between urea and cellulose by combining solid-state 13C CP/MAS NMR and extended Hückel charges. Cellulose 21:4019–4027
Zurück zum Zitat Spiro K (1900) Ueber die Beeinflussung der Eiweisscoagulation durch stickstoffhaltige Substanzen. Z Physiol Chem 30:182–199CrossRef Spiro K (1900) Ueber die Beeinflussung der Eiweisscoagulation durch stickstoffhaltige Substanzen. Z Physiol Chem 30:182–199CrossRef
Zurück zum Zitat Weerashinghe S, Smith PE (2003) A Kirkwood-Buff derived force field for mixtures of urea and water. J Phys Chem B 107:3891–3898CrossRef Weerashinghe S, Smith PE (2003) A Kirkwood-Buff derived force field for mixtures of urea and water. J Phys Chem B 107:3891–3898CrossRef
Zurück zum Zitat Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086–2093CrossRef Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086–2093CrossRef
Zurück zum Zitat Wetlaufer DB, Malik SK, Stoller L, Coffin RL (1964) Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies. J Am Chem Soc 86:508–514CrossRef Wetlaufer DB, Malik SK, Stoller L, Coffin RL (1964) Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies. J Am Chem Soc 86:508–514CrossRef
Zurück zum Zitat Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192CrossRef Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192CrossRef
Zurück zum Zitat Zangi R, Zhou R, Berne BJ (2009) Ureas action on hydrophobic interactions. J Am Chem Soc 131:1535–1541CrossRef Zangi R, Zhou R, Berne BJ (2009) Ureas action on hydrophobic interactions. J Am Chem Soc 131:1535–1541CrossRef
Zurück zum Zitat Zhang S, Li F, Yu J, Hsieh YL (2010) Dissolution behaviour and solubility of cellulose in NaOH complex solution. Carbohydr Polym 81:668–674CrossRef Zhang S, Li F, Yu J, Hsieh YL (2010) Dissolution behaviour and solubility of cellulose in NaOH complex solution. Carbohydr Polym 81:668–674CrossRef
Zurück zum Zitat Zhao X, Chen Y, Jiang X, Shang Y, Zhang L, Gong Q, Zhang H, Wang Z, Zhou X (2013) The thermodynamics study on the dissolution mechanism of cellobiose in NaOH/urea aqueous solution. J Therm Anal Calorim 111:891–896CrossRef Zhao X, Chen Y, Jiang X, Shang Y, Zhang L, Gong Q, Zhang H, Wang Z, Zhou X (2013) The thermodynamics study on the dissolution mechanism of cellobiose in NaOH/urea aqueous solution. J Therm Anal Calorim 111:891–896CrossRef
Metadaten
Titel
The mechanism of cellulose solubilization by urea studied by molecular simulation
verfasst von
Erik Wernersson
Björn Stenqvist
Mikael Lund
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2015
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0548-8

Weitere Artikel der Ausgabe 2/2015

Cellulose 2/2015 Zur Ausgabe