Skip to main content
Erschienen in: Cellulose 5/2016

13.07.2016 | Original Paper

Products of low-temperature pyrolysis of nanocellulose esters and implications for the mechanism of thermal stabilization

verfasst von: Melissa B. Agustin, Fumiaki Nakatsubo, Hiroyuki Yano

Erschienen in: Cellulose | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Esterification was used to improve the thermal stability of nanocellulose to extend its application as reinforcing filler to polymer matrices with high melting point. The effect of the structure of ester groups on thermal stability was studied in detail. Various types of nanocellulose esters (straight-chain, C2–C14; cyclic adamantoyl, ADM; aromatic benzoyl, BNZ; and branched pivaloyl, PIV) with degree of substitution values in the range of 0.40–0.47 were prepared from bacterial cellulose nanofibers and nanocrystals. The reaction conditions used to prepare the esters maintained the viscosity-average degree of polymerization (DPv) and crystallinity of the starting materials. Thermogravimetric analysis showed that the temperature at maximum weight loss rate (Tmax) increased after esterification. The structure of the ester groups and the DPv, however, showed no varying effect on Tmax. The 5 % weight loss temperature (WLT) which was used to assess the thermal stability at the onset of thermal degradation varied with the type of ester. Lower 5 % WLT was observed in straight-chain esters than those of the bulky esters of ADM, BNZ and PIV; which also showed high resistance to weight loss when subjected to isothermal heating. To understand the event at the onset of thermal degradation, low temperature pyrolysis was conducted. The evolved gases were separated and identified by gas chromatography–mass spectrometry technique. Results showed that at the onset of thermal degradation, levoglucosan (LG) is produced from the untreated BC nanocrystals. After esterification, LG formation was inhibited. The removal of the ester groups or deprotection is the main event at the onset of thermal degradation of nanocellulose esters. From the structure of the pyrolysis products, the mechanism of thermal deprotection of nanocellulose esters is proposed for the first time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abraham E, Nevo Y, Slattegard R et al (2016) Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials. ACS Sustain Chem Eng 4:1338–1346CrossRef Abraham E, Nevo Y, Slattegard R et al (2016) Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials. ACS Sustain Chem Eng 4:1338–1346CrossRef
Zurück zum Zitat Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23:451–464CrossRef Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23:451–464CrossRef
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef
Zurück zum Zitat Ávila Ramírez JA, Suriano CJ, Cerrutti P, Foresti ML (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423CrossRef Ávila Ramírez JA, Suriano CJ, Cerrutti P, Foresti ML (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423CrossRef
Zurück zum Zitat Broido A (1973) Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. J Appl Polym Sci 17:3627–3635CrossRef Broido A (1973) Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. J Appl Polym Sci 17:3627–3635CrossRef
Zurück zum Zitat Evershed RP, Stott AW, Raven A et al (1995) Formation of long-chain ketones in ancient pottery vessels by pyrolysis of acyl lipids. Tetrahedron Lett 36:8875–8878CrossRef Evershed RP, Stott AW, Raven A et al (1995) Formation of long-chain ketones in ancient pottery vessels by pyrolysis of acyl lipids. Tetrahedron Lett 36:8875–8878CrossRef
Zurück zum Zitat Fahma F, Takemura A, Saito Y (2014) Acetylation and stepwise solvent-exchange to modify hydrophilic cellulose whiskers to polychloroprene-compatible nanofiller. Cellulose 21:2519–2527CrossRef Fahma F, Takemura A, Saito Y (2014) Acetylation and stepwise solvent-exchange to modify hydrophilic cellulose whiskers to polychloroprene-compatible nanofiller. Cellulose 21:2519–2527CrossRef
Zurück zum Zitat Freire CSR, Silvestre AJD, Neto CP et al (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100:1093–1102CrossRef Freire CSR, Silvestre AJD, Neto CP et al (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100:1093–1102CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat Heinze T, Liebert TF, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis, characterization and structure–property relations. Cellulose 10:283–296CrossRef Heinze T, Liebert TF, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis, characterization and structure–property relations. Cellulose 10:283–296CrossRef
Zurück zum Zitat Ifuku S, Nogi M, Abe K et al (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978CrossRef Ifuku S, Nogi M, Abe K et al (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978CrossRef
Zurück zum Zitat Jandura P, Riedl B, Kokta BV (2000) Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab 70:387–394CrossRef Jandura P, Riedl B, Kokta BV (2000) Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab 70:387–394CrossRef
Zurück zum Zitat Janicek M, Krejci O, Cermak R (2013) Thermal stability of surface-esterified cellulose and its composite with polyolefinic matrix. Cellulose 20:2745–2755CrossRef Janicek M, Krejci O, Cermak R (2013) Thermal stability of surface-esterified cellulose and its composite with polyolefinic matrix. Cellulose 20:2745–2755CrossRef
Zurück zum Zitat Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:126–1140CrossRef Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:126–1140CrossRef
Zurück zum Zitat Kato H, Nakatsubo F, Abe K, Yano H (2015) Crosslinking via sulfur vulcanization of natural rubber and cellulose nanofibers incorporating unsaturated fatty acids. RSC Adv 5:29814–29819CrossRef Kato H, Nakatsubo F, Abe K, Yano H (2015) Crosslinking via sulfur vulcanization of natural rubber and cellulose nanofibers incorporating unsaturated fatty acids. RSC Adv 5:29814–29819CrossRef
Zurück zum Zitat Labafzadeh SR, Kavakka JS, Sievanen K et al (2012) Reactive dissolution of cellulose and pulp through acylation in pyridine. Cellulose 243:1295–1304CrossRef Labafzadeh SR, Kavakka JS, Sievanen K et al (2012) Reactive dissolution of cellulose and pulp through acylation in pyridine. Cellulose 243:1295–1304CrossRef
Zurück zum Zitat Lee K-Y, Quero F, Blaker JJ et al (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605CrossRef Lee K-Y, Quero F, Blaker JJ et al (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605CrossRef
Zurück zum Zitat Matsuoka S, Kawamoto H, Saka S (2011) Thermal glycosylation and degradation reactions occurring at the reducing ends of cellulose during low-temperature pyrolysis. Carbohydr Res 346:272–279CrossRef Matsuoka S, Kawamoto H, Saka S (2011) Thermal glycosylation and degradation reactions occurring at the reducing ends of cellulose during low-temperature pyrolysis. Carbohydr Res 346:272–279CrossRef
Zurück zum Zitat Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrolysis 106:138–146CrossRef Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrolysis 106:138–146CrossRef
Zurück zum Zitat Matsuoka S, Kawamoto H, Saka S (2016) Reactivity of cellulose reducing end in pyrolysis as studied by methyl glucoside-impregnation. Carbohydr Res 420:46–50CrossRef Matsuoka S, Kawamoto H, Saka S (2016) Reactivity of cellulose reducing end in pyrolysis as studied by methyl glucoside-impregnation. Carbohydr Res 420:46–50CrossRef
Zurück zum Zitat Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer (Guildf) 50:4552–4563CrossRef Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer (Guildf) 50:4552–4563CrossRef
Zurück zum Zitat Nakatsubo F, Yoshida N, Abe K, Yano H (2010) Chemical surface-modification of cellulose nanofibers in cellulose-compatible solvents. In: 239th ACS National Meeting Technical Program Archive Nakatsubo F, Yoshida N, Abe K, Yano H (2010) Chemical surface-modification of cellulose nanofibers in cellulose-compatible solvents. In: 239th ACS National Meeting Technical Program Archive
Zurück zum Zitat Nichols PC, Holman RT (1972) Pyrolysis of saturated triglycerides. Lipids 7:773–779CrossRef Nichols PC, Holman RT (1972) Pyrolysis of saturated triglycerides. Lipids 7:773–779CrossRef
Zurück zum Zitat Pavia D, Lampman G, Kriz G (2001) Introduction to spectroscopy, 3rd edn. Harcourt Inc, Orlando Pavia D, Lampman G, Kriz G (2001) Introduction to spectroscopy, 3rd edn. Harcourt Inc, Orlando
Zurück zum Zitat Pine SH (1987) Organic chemistry, vol 5. McGraw-Hill Book Company, Singapore Pine SH (1987) Organic chemistry, vol 5. McGraw-Hill Book Company, Singapore
Zurück zum Zitat Qu T, Guo W, Shen L et al (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 20:388–393 Qu T, Guo W, Shen L et al (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 20:388–393
Zurück zum Zitat Sass J, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127CrossRef Sass J, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127CrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
Zurück zum Zitat Shafizadeh F, Furneaux RH, Cochran TG et al (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23:3525–3539CrossRef Shafizadeh F, Furneaux RH, Cochran TG et al (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23:3525–3539CrossRef
Zurück zum Zitat Spinella S, Maiorana A, Qian Q et al (2016) Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain Chem Eng 4:1538–1550CrossRef Spinella S, Maiorana A, Qian Q et al (2016) Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain Chem Eng 4:1538–1550CrossRef
Zurück zum Zitat Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464CrossRef Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464CrossRef
Zurück zum Zitat Tomé LC, Freire MG, Rebelo LPN et al (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464CrossRef Tomé LC, Freire MG, Rebelo LPN et al (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464CrossRef
Zurück zum Zitat Uschanov P, Johansson LS, Maunu SL, Laine J (2011) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18:393–404CrossRef Uschanov P, Johansson LS, Maunu SL, Laine J (2011) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18:393–404CrossRef
Zurück zum Zitat Vuoti S, Talja R, Johansson L-S et al (2013) Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20:2359–2370CrossRef Vuoti S, Talja R, Johansson L-S et al (2013) Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20:2359–2370CrossRef
Zurück zum Zitat Wang Z (2009) Comprehensive organic name reactions and reagents. Wiley, Hoboken Wang Z (2009) Comprehensive organic name reactions and reagents. Wiley, Hoboken
Zurück zum Zitat Xu D, Li B, Tate C, Edgar KJ (2011) Studies on regioselective acylation of cellulose with bulky acid chlorides. Cellulose 18:405–419CrossRef Xu D, Li B, Tate C, Edgar KJ (2011) Studies on regioselective acylation of cellulose with bulky acid chlorides. Cellulose 18:405–419CrossRef
Zurück zum Zitat Yu HY, Qin ZY, Sun B et al (2014) One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag nanocomposites. J Nanopart Res 16:1–12 Yu HY, Qin ZY, Sun B et al (2014) One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag nanocomposites. J Nanopart Res 16:1–12
Metadaten
Titel
Products of low-temperature pyrolysis of nanocellulose esters and implications for the mechanism of thermal stabilization
verfasst von
Melissa B. Agustin
Fumiaki Nakatsubo
Hiroyuki Yano
Publikationsdatum
13.07.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1004-0

Weitere Artikel der Ausgabe 5/2016

Cellulose 5/2016 Zur Ausgabe