Skip to main content
Erschienen in: Cellulose 8/2017

16.06.2017 | Original Paper

Optimizing the mechanical properties of cellulose nanopaper through surface energy and critical length scale considerations

verfasst von: Xin Qin, Shizhe Feng, Zhaoxu Meng, Sinan Keten

Erschienen in: Cellulose | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanopaper exhibits outstanding stiffness, strength, and toughness that originate from the exceptional properties of constituent cellulose nanocrystals (CNCs). However, it remains challenging to link the nanoscale properties of rod-like CNCs and their structural arrangements to the macroscale performance of nanopaper in a predictive manner. Here we address this need by establishing an atomistically informed coarse-grained model for CNCs via a strain energy conservation paradigm and simulating CNC nanopaper properties mesoscopically. We predict how the mechanical properties of CNC nanopaper with nacre-inspired brick-and-mortar structure depend on CNC overlap length and interfacial energy. We show that the modulus and strength both increase with increasing overlap length, but saturate at different critical length scales where a transition from non-covalent interfacial sliding to CNCs fracture is the key influencing mechanism. Maximum toughness is achieved when the interface and CNC failure are tuned to occur at the same time through balanced failure. We propose strategies for maximizing nanopaper mechanical performance by tuning interfacial interactions of constitutive CNCs through surface modifications that improve shear transfer capability. Our model generates broadly applicable insights into factors governing the performance of self-assembling paper materials made from 1D nanostructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Buehler MJ (2006) Mesoscale modeling of mechanics of carbon nanotubes: self-assembly, self-folding, and fracture. J Mater Res 21:2855–2869CrossRef Buehler MJ (2006) Mesoscale modeling of mechanics of carbon nanotubes: self-assembly, self-folding, and fracture. J Mater Res 21:2855–2869CrossRef
Zurück zum Zitat Cao C, Daly M, Chen B, Howe JY, Singh CV, Filleter T, Sun Y (2015) Strengthening in graphene oxide nanosheets: bridging the gap between interplanar and intraplanar fracture. Nano Lett 15:6528–6534. doi:10.1021/acs.nanolett.5b02173 CrossRef Cao C, Daly M, Chen B, Howe JY, Singh CV, Filleter T, Sun Y (2015) Strengthening in graphene oxide nanosheets: bridging the gap between interplanar and intraplanar fracture. Nano Lett 15:6528–6534. doi:10.​1021/​acs.​nanolett.​5b02173 CrossRef
Zurück zum Zitat D’Elia E, Eslava S, Miranda M, Georgiou TK, Saiz E (2016) Autonomous self-healing structural composites with bio-inspired design. Sci Rep 6:25059. doi:10.1038/srep25059 CrossRef D’Elia E, Eslava S, Miranda M, Georgiou TK, Saiz E (2016) Autonomous self-healing structural composites with bio-inspired design. Sci Rep 6:25059. doi:10.​1038/​srep25059 CrossRef
Zurück zum Zitat Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic x-ray scattering. Macromolecules 41:9755–9759. doi:10.1021/ma801796u CrossRef Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic x-ray scattering. Macromolecules 41:9755–9759. doi:10.​1021/​ma801796u CrossRef
Zurück zum Zitat Dong H et al (2015) Highly transparent and toughened poly(methyl methacrylate) nanocomposite films containing networks of cellulose nanofibrils. ACS Appl Mater Interfaces 7:25464–25472. doi:10.1021/acsami.5b08317 CrossRef Dong H et al (2015) Highly transparent and toughened poly(methyl methacrylate) nanocomposite films containing networks of cellulose nanofibrils. ACS Appl Mater Interfaces 7:25464–25472. doi:10.​1021/​acsami.​5b08317 CrossRef
Zurück zum Zitat Dumanli AG, van der Kooij HM, Kamita G, Reisner E, Baumberg JJ, Steiner U, Vignolini S (2014) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6:12302–12306. doi:10.1021/am501995e CrossRef Dumanli AG, van der Kooij HM, Kamita G, Reisner E, Baumberg JJ, Steiner U, Vignolini S (2014) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6:12302–12306. doi:10.​1021/​am501995e CrossRef
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi:10.1021/bm700769p CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi:10.​1021/​bm700769p CrossRef
Zurück zum Zitat Fox DM et al (2016) Simultaneously tailoring surface energies and thermal stabilities of cellulose nanocrystals using ion exchange: effects on polymer composite properties for transportation infrastructure, and renewable energy applications. ACS Appl Mater Interfaces 8:27270–27281. doi:10.1021/acsami.6b06083 CrossRef Fox DM et al (2016) Simultaneously tailoring surface energies and thermal stabilities of cellulose nanocrystals using ion exchange: effects on polymer composite properties for transportation infrastructure, and renewable energy applications. ACS Appl Mater Interfaces 8:27270–27281. doi:10.​1021/​acsami.​6b06083 CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi:10.1021/bm800038n CrossRef Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi:10.​1021/​bm800038n CrossRef
Zurück zum Zitat Hsu DD, Xia W, Arturo SG, Keten S (2014) Systematic method for thermomechanically consistent coarse-graining: a universal model for methacrylate-based polymers. J Chem Theory Comput 10:2514–2527. doi:10.1021/ct500080h CrossRef Hsu DD, Xia W, Arturo SG, Keten S (2014) Systematic method for thermomechanically consistent coarse-graining: a universal model for methacrylate-based polymers. J Chem Theory Comput 10:2514–2527. doi:10.​1021/​ct500080h CrossRef
Zurück zum Zitat Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759. doi:10.1039/C5NR08179C CrossRef Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759. doi:10.​1039/​C5NR08179C CrossRef
Zurück zum Zitat Kelly JA, Giese M, Shopsowitz KE, Hamad WY, MacLachlan MJ (2014) The development of chiral nematic mesoporous materials. Acc Chem Res 47:1088–1096. doi:10.1021/ar400243m CrossRef Kelly JA, Giese M, Shopsowitz KE, Hamad WY, MacLachlan MJ (2014) The development of chiral nematic mesoporous materials. Acc Chem Res 47:1088–1096. doi:10.​1021/​ar400243m CrossRef
Zurück zum Zitat Kulasinski K, Guyer R, Keten S, Derome D, Carmeliet J (2015) Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules. doi:10.1021/acs.macromol.5b00248 Kulasinski K, Guyer R, Keten S, Derome D, Carmeliet J (2015) Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules. doi:10.​1021/​acs.​macromol.​5b00248
Zurück zum Zitat Lagerwall JPF, Schutz C, Salajkova M, Noh J, Hyun Park J, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80. doi:10.1038/am.2013.69 CrossRef Lagerwall JPF, Schutz C, Salajkova M, Noh J, Hyun Park J, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80. doi:10.​1038/​am.​2013.​69 CrossRef
Zurück zum Zitat Liu Y, Li Y, Yang G, Zheng X, Zhou S (2015) Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Interfaces 7:4118–4126. doi:10.1021/am5081056 CrossRef Liu Y, Li Y, Yang G, Zheng X, Zhou S (2015) Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Interfaces 7:4118–4126. doi:10.​1021/​am5081056 CrossRef
Zurück zum Zitat Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605CrossRef Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.​1039/​c0cs00108b CrossRef
Zurück zum Zitat Nikolov S et al (2010) Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: the example of lobster cuticle. Adv Mater 22:519–526. doi:10.1002/adma.200902019 CrossRef Nikolov S et al (2010) Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: the example of lobster cuticle. Adv Mater 22:519–526. doi:10.​1002/​adma.​200902019 CrossRef
Zurück zum Zitat Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858. doi:10.1021/ma902383k CrossRef Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858. doi:10.​1021/​ma902383k CrossRef
Zurück zum Zitat Reising AB, Moon RJ, Youngblood JP (2012) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J Sci Technol Forest Prod Process 2:32–41 Reising AB, Moon RJ, Youngblood JP (2012) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J Sci Technol Forest Prod Process 2:32–41
Zurück zum Zitat Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809. doi:10.1039/C1SM06050C CrossRef Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809. doi:10.​1039/​C1SM06050C CrossRef
Zurück zum Zitat Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198. doi:10.1021/bm100490s CrossRef Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198. doi:10.​1021/​bm100490s CrossRef
Zurück zum Zitat Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. doi:10.1021/bm2008907 CrossRef Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. doi:10.​1021/​bm2008907 CrossRef
Zurück zum Zitat Sehaqui H, Ezekiel Mushi N, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049. doi:10.1021/am2016766 CrossRef Sehaqui H, Ezekiel Mushi N, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049. doi:10.​1021/​am2016766 CrossRef
Zurück zum Zitat Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed 51:6886–6890. doi:10.1002/anie.201201113 CrossRef Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed 51:6886–6890. doi:10.​1002/​anie.​201201113 CrossRef
Zurück zum Zitat Sinko R, Mishra S, Ruiz L, Brandis N, Keten S (2013) Dimensions of biological cellulose nanocrystals maximize fracture strength. ACS Macro Lett 3:64–69. doi:10.1021/mz400471y CrossRef Sinko R, Mishra S, Ruiz L, Brandis N, Keten S (2013) Dimensions of biological cellulose nanocrystals maximize fracture strength. ACS Macro Lett 3:64–69. doi:10.​1021/​mz400471y CrossRef
Zurück zum Zitat Song ZQ, Ni Y, Peng LM, Liang HY, He LH (2016) Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates. Sci Rep 6:23724. doi:10.1038/srep23724 CrossRef Song ZQ, Ni Y, Peng LM, Liang HY, He LH (2016) Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates. Sci Rep 6:23724. doi:10.​1038/​srep23724 CrossRef
Zurück zum Zitat Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061. doi:10.1021/bm049291k CrossRef Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061. doi:10.​1021/​bm049291k CrossRef
Zurück zum Zitat Wang B, Torres-Rendon JG, Yu J, Zhang Y, Walther A (2015) Aligned bioinspired cellulose nanocrystal-based nanocomposites with synergetic mechanical properties and improved hygromechanical performance. ACS Appl Mater Interfaces 7:4595–4607. doi:10.1021/am507726t CrossRef Wang B, Torres-Rendon JG, Yu J, Zhang Y, Walther A (2015) Aligned bioinspired cellulose nanocrystal-based nanocomposites with synergetic mechanical properties and improved hygromechanical performance. ACS Appl Mater Interfaces 7:4595–4607. doi:10.​1021/​am507726t CrossRef
Zurück zum Zitat Wei X, Naraghi M, Espinosa HD (2012) Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design. ACS Nano 6:2333–2344. doi:10.1021/nn204506d CrossRef Wei X, Naraghi M, Espinosa HD (2012) Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design. ACS Nano 6:2333–2344. doi:10.​1021/​nn204506d CrossRef
Zurück zum Zitat Xia W, Ruiz L, Pugno NM, Keten S (2016) Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. Nanoscale 8:6456–6462. doi:10.1039/C5NR08488A CrossRef Xia W, Ruiz L, Pugno NM, Keten S (2016) Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. Nanoscale 8:6456–6462. doi:10.​1039/​C5NR08488A CrossRef
Zurück zum Zitat Xie B, Liu Y, Ding Y, Zheng Q, Xu Z (2011) Mechanics of carbon nanotube networks: microstructural evolution and optimal design. Soft Matter 7:10039. doi:10.1039/c1sm06034a CrossRef Xie B, Liu Y, Ding Y, Zheng Q, Xu Z (2011) Mechanics of carbon nanotube networks: microstructural evolution and optimal design. Soft Matter 7:10039. doi:10.​1039/​c1sm06034a CrossRef
Metadaten
Titel
Optimizing the mechanical properties of cellulose nanopaper through surface energy and critical length scale considerations
verfasst von
Xin Qin
Shizhe Feng
Zhaoxu Meng
Sinan Keten
Publikationsdatum
16.06.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1367-x

Weitere Artikel der Ausgabe 8/2017

Cellulose 8/2017 Zur Ausgabe