Skip to main content
Erschienen in: Cellulose 8/2017

15.05.2017 | Original Paper

Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment

verfasst von: Koel Saha, Jhilly Dasgupta, Sudip Chakraborty, Felipe Antonio Fernandes Antunes, Jaya Sikder, Stefano Curcio, Julio Cesar dos Santos, Hassan A. Arafat, Silvio Silvério da Silva

Erschienen in: Cellulose | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]oAc) was employed for the pretreatment of sugarcane bagasse (SCB) and extraction of lignin, a potentially valuable by-product of the biofuel industry. Response surface methodology based on central composite design was exploited and thereby an empirical model, exhibiting a coefficient of determination, R2, of 0.9890, was established to optimize lignin recovery. In particular, a maximum lignin yield, equal to 90.1%, was calculated at the optimal pretreatment conditions, namely time: 120 min, temperature: 140 °C, and ionic liquid to bagasse ratio equal to 20:1 (wt/wt). The presence of guaiacyl and syringyl rings in lignin was confirmed by Fourier transform infrared spectroscopy (FTIR); whereas UV–Vis spectrophotometry showed that both p-coumaric acid and ferulic acid were contained in the lignin. Thermal analysis indicated a maximum decomposition rate of 2%/°C at 265 °C while Gel permeation chromatography analysis revealed that the molecular weight (Mw) of recovered lignin was equal to 1769 g/mol. Comparison of FTIR spectra of pretreated and untreated bagasse showed a negligible presence of lignin in the pretreated samples. Maximum delignification of bagasse after pretreatment was thus ensured. Thermal stability of the ionic liquid towards recyclability was proven by thermogravimetric analysis. The present study established adequate performance of neat and recycled ([EMIM]oAc) with regard to lignin recovery from SCB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antunes FAF, Chandel AK, Milessi TSS, Santos JC, Rosa CA, da Silva SS (2014) Bioethanol production from sugarcane bagasse by a novel brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: evaluation of fermentation medium. Int J Chem Eng Article Id 180681:1–8 Antunes FAF, Chandel AK, Milessi TSS, Santos JC, Rosa CA, da Silva SS (2014) Bioethanol production from sugarcane bagasse by a novel brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: evaluation of fermentation medium. Int J Chem Eng Article Id 180681:1–8
Zurück zum Zitat Asada C, Basnet S, Otsuka M, Sasaki C, Nakamura Y (2015) Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. Int J Biol Macromolec 74:413–419CrossRef Asada C, Basnet S, Otsuka M, Sasaki C, Nakamura Y (2015) Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. Int J Biol Macromolec 74:413–419CrossRef
Zurück zum Zitat Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52:858–875CrossRef Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52:858–875CrossRef
Zurück zum Zitat Barr CJ, Hanson BL, Click K, Perrotta G, Schall CA (2014) Influence of ionic-liquid incubation temperature on changes in cellulose structure, biomass composition, and enzymatic digestibility. Cellulose 21:973–982CrossRef Barr CJ, Hanson BL, Click K, Perrotta G, Schall CA (2014) Influence of ionic-liquid incubation temperature on changes in cellulose structure, biomass composition, and enzymatic digestibility. Cellulose 21:973–982CrossRef
Zurück zum Zitat Boeriu CG, Bravo D, Gosselink RJA, Van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218CrossRef Boeriu CG, Bravo D, Gosselink RJA, Van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218CrossRef
Zurück zum Zitat Canilha L, Chandel AK, dos Santos Milessi TS, Antunes FAF, da Costa Freitas WL, das Graças Almeida Felipe M, da Silva SS, (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15CrossRef Canilha L, Chandel AK, dos Santos Milessi TS, Antunes FAF, da Costa Freitas WL, das Graças Almeida Felipe M, da Silva SS, (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15CrossRef
Zurück zum Zitat Cao J, Wu Y, Jin Y, Yilihan P, Huang W (2014) Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41. J Taiwan Inst Chem Eng 45:860–868CrossRef Cao J, Wu Y, Jin Y, Yilihan P, Huang W (2014) Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41. J Taiwan Inst Chem Eng 45:860–868CrossRef
Zurück zum Zitat Casas A, Oliet M, Alonso MV, Rodriguez F (2012) Dissolution of Pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regeneration and characterization. Sep Purif Technol 97:115–122CrossRef Casas A, Oliet M, Alonso MV, Rodriguez F (2012) Dissolution of Pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regeneration and characterization. Sep Purif Technol 97:115–122CrossRef
Zurück zum Zitat Chakraborty S, Aggarwal V, Mukherjee D, Andras K (2012) Biomass to biofuel: a review on production technology. Asia Pac J Chem Eng 7:S254–S262CrossRef Chakraborty S, Aggarwal V, Mukherjee D, Andras K (2012) Biomass to biofuel: a review on production technology. Asia Pac J Chem Eng 7:S254–S262CrossRef
Zurück zum Zitat Chakraborty S, Dasgupta J, Farooq U, Sikder J, Drioli E, Curcio S (2014) Experimental analysis, modeling and optimization of chromium (VI) removal from aqueous solutions by polymer-enhanced ultrafiltration. J Memb Sci 456:139–154CrossRef Chakraborty S, Dasgupta J, Farooq U, Sikder J, Drioli E, Curcio S (2014) Experimental analysis, modeling and optimization of chromium (VI) removal from aqueous solutions by polymer-enhanced ultrafiltration. J Memb Sci 456:139–154CrossRef
Zurück zum Zitat Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34CrossRef Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34CrossRef
Zurück zum Zitat da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Biores Technol 142:198–208CrossRef da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Biores Technol 142:198–208CrossRef
Zurück zum Zitat Dasgupta J, Singh M, Sikder J, Padarthi V, Chakraborty S, Curcio S (2015) Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration. Ecotox Environ Safe 121:271–278CrossRef Dasgupta J, Singh M, Sikder J, Padarthi V, Chakraborty S, Curcio S (2015) Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration. Ecotox Environ Safe 121:271–278CrossRef
Zurück zum Zitat Fu D, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102:7008–7011CrossRef Fu D, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102:7008–7011CrossRef
Zurück zum Zitat Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenerg 57:264–279CrossRef Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenerg 57:264–279CrossRef
Zurück zum Zitat Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 99:1765–1766CrossRef Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 99:1765–1766CrossRef
Zurück zum Zitat Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. Chem Sus Chem 3:1078–1084CrossRef Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. Chem Sus Chem 3:1078–1084CrossRef
Zurück zum Zitat Kim J-Y, Shin E-J, Eom I-Y, Won K, Kim YH, Choi D, Choi I-G, Choi J-W (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol 102:9020–9025CrossRef Kim J-Y, Shin E-J, Eom I-Y, Won K, Kim YH, Choi D, Choi I-G, Choi J-W (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol 102:9020–9025CrossRef
Zurück zum Zitat Koo B-W, Park N, Jeong H-S, Choi J-W, Yeo H, Choi I-G (2011) Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. J Ind Eng Chem 17:18–24CrossRef Koo B-W, Park N, Jeong H-S, Choi J-W, Yeo H, Choi I-G (2011) Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. J Ind Eng Chem 17:18–24CrossRef
Zurück zum Zitat Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym 77(1):41–46CrossRef Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym 77(1):41–46CrossRef
Zurück zum Zitat Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376CrossRef Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376CrossRef
Zurück zum Zitat Lee KM, Ngoh GC, Chua ASM (2015) Ionic liquid-mediated solid acid saccharification of sago waste: kinetic, ionic liquid recovery and solid acid catalyst reusability study. Ind Crop Prod 77:415–423CrossRef Lee KM, Ngoh GC, Chua ASM (2015) Ionic liquid-mediated solid acid saccharification of sago waste: kinetic, ionic liquid recovery and solid acid catalyst reusability study. Ind Crop Prod 77:415–423CrossRef
Zurück zum Zitat Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575CrossRef Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575CrossRef
Zurück zum Zitat Li MF, Fan YM, Sun RC, Xu F (2010) Characterization of extracted lignin of Bamboo (Neosinocalamusaffinis) pretreated with sodium hydroxide/urea solution at low temperature. BioResources 5(3):1762–1778 Li MF, Fan YM, Sun RC, Xu F (2010) Characterization of extracted lignin of Bamboo (Neosinocalamusaffinis) pretreated with sodium hydroxide/urea solution at low temperature. BioResources 5(3):1762–1778
Zurück zum Zitat Ma H-H, Zhang B-X, Zhang P, Li S, Gao Y-F, Hu X-M (2016) An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids. Fuel Process Technol 148:138–145CrossRef Ma H-H, Zhang B-X, Zhang P, Li S, Gao Y-F, Hu X-M (2016) An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids. Fuel Process Technol 148:138–145CrossRef
Zurück zum Zitat Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42(13):5963CrossRef Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42(13):5963CrossRef
Zurück zum Zitat Matsushita Y, Inomata T, Takagi Y, Hasegawa T, Fukushima K (2011) Conversion of sulfuric acid lignin generated during bioethanol production from lignocellulosic materials into polyesters with ɛ-caprolactone. J Wood Sci 57:214–218CrossRef Matsushita Y, Inomata T, Takagi Y, Hasegawa T, Fukushima K (2011) Conversion of sulfuric acid lignin generated during bioethanol production from lignocellulosic materials into polyesters with ɛ-caprolactone. J Wood Sci 57:214–218CrossRef
Zurück zum Zitat Moghaddam L, Zhang Z, Wellard RM, Bartley JP, O’Hara IM, Doherty WOS (2014) Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass Bioenerg 70:498–512CrossRef Moghaddam L, Zhang Z, Wellard RM, Bartley JP, O’Hara IM, Doherty WOS (2014) Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass Bioenerg 70:498–512CrossRef
Zurück zum Zitat Nelder JA (1998) The selection of terms in response surface models—how strong is the weak heredity principle. Am Stat 52:315–318 Nelder JA (1998) The selection of terms in response surface models—how strong is the weak heredity principle. Am Stat 52:315–318
Zurück zum Zitat Ninomiya K, Inoue K, Aomori Y, Ohnishi A, Ogino C, Shimizu N, Takahashi K (2015) Characterization of fractionated biomass component and recovered ionic liquid during repeated process of cholinium ionic liquid-assisted pretreatment and fractionation. Chem Eng J 259:323–329CrossRef Ninomiya K, Inoue K, Aomori Y, Ohnishi A, Ogino C, Shimizu N, Takahashi K (2015) Characterization of fractionated biomass component and recovered ionic liquid during repeated process of cholinium ionic liquid-assisted pretreatment and fractionation. Chem Eng J 259:323–329CrossRef
Zurück zum Zitat Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interfaceterface 19:406–419 Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interfaceterface 19:406–419
Zurück zum Zitat Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA (2015) Characterization of agave bagasse as a function of  ionic liquid pretreatment. Biomass Bioenerg 75:180–188CrossRef Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA (2015) Characterization of agave bagasse as a function of  ionic liquid pretreatment. Biomass Bioenerg 75:180–188CrossRef
Zurück zum Zitat Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124–3136CrossRef Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124–3136CrossRef
Zurück zum Zitat Prado R, Erdocia X, Labidi J (2016) Study of the influence of reutilization ionic liquid on lignin extraction. J Clean Prod 111:125–132CrossRef Prado R, Erdocia X, Labidi J (2016) Study of the influence of reutilization ionic liquid on lignin extraction. J Clean Prod 111:125–132CrossRef
Zurück zum Zitat Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Biores Technol 117:251–256CrossRef Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Biores Technol 117:251–256CrossRef
Zurück zum Zitat Rashid T, Kait CF, Regupathi I, Murugesan T (2016) Dissolution of kraft lignin using protic ionic liquids and characterization. Ind Crop Prod 84:284–293CrossRef Rashid T, Kait CF, Regupathi I, Murugesan T (2016) Dissolution of kraft lignin using protic ionic liquids and characterization. Ind Crop Prod 84:284–293CrossRef
Zurück zum Zitat Saha K, Maheswari RU, Sikder J, Chakraborty S, da Silva SS, dos Santos JC (2017) Membranes as a tool to support biorefineries: applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renew Sustain Energy Rev 74:873–890CrossRef Saha K, Maheswari RU, Sikder J, Chakraborty S, da Silva SS, dos Santos JC (2017) Membranes as a tool to support biorefineries: applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renew Sustain Energy Rev 74:873–890CrossRef
Zurück zum Zitat Sidik DAB, Ngadi N, Amin NAS (2013) Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid. BioresourTechnol 135:690–696CrossRef Sidik DAB, Ngadi N, Amin NAS (2013) Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid. BioresourTechnol 135:690–696CrossRef
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP) (Revised August 2012). Issue Date: 4/25/2008 NREL/TP-510-42618, 18 pp Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP) (Revised August 2012). Issue Date: 4/25/2008 NREL/TP-510-42618, 18 pp
Zurück zum Zitat Solomon S (2014) Sugarcane Agriculture and Sugar Industry in India: at a Glance. Sugar Tech 16(2):113–124CrossRef Solomon S (2014) Sugarcane Agriculture and Sugar Industry in India: at a Glance. Sugar Tech 16(2):113–124CrossRef
Zurück zum Zitat Su Y, Du R, Guo H, Cao M, Wu Q, Su R, Qi W, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330CrossRef Su Y, Du R, Guo H, Cao M, Wu Q, Su R, Qi W, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330CrossRef
Zurück zum Zitat Sun F, Chen H (2008) Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol 99:6156–6161CrossRef Sun F, Chen H (2008) Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol 99:6156–6161CrossRef
Zurück zum Zitat Sun RC, Tomkinson J, Jones GL (2000) Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polym Degrad Stab 68(1):111–119CrossRef Sun RC, Tomkinson J, Jones GL (2000) Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polym Degrad Stab 68(1):111–119CrossRef
Zurück zum Zitat Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646CrossRef Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646CrossRef
Zurück zum Zitat Sun Y-C, Xu JK, Xu F, Sun R-C (2013) Efficient separation and physico-chemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent. Ind Crop Prod 47:277–285CrossRef Sun Y-C, Xu JK, Xu F, Sun R-C (2013) Efficient separation and physico-chemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent. Ind Crop Prod 47:277–285CrossRef
Zurück zum Zitat Tan HT, Lee KT (2012) Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem Eng J183:448–458CrossRef Tan HT, Lee KT (2012) Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem Eng J183:448–458CrossRef
Zurück zum Zitat Teramoto Y, Lee SH, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99:8856–8863CrossRef Teramoto Y, Lee SH, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99:8856–8863CrossRef
Zurück zum Zitat Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenerg 81:9–18CrossRef Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenerg 81:9–18CrossRef
Zurück zum Zitat Trinh TK, Kang LS (2011) Response surface methodological approach to optimize the coagulation–flocculation process in drinking water treatment. Chem Eng Res Des 89:1126–1135CrossRef Trinh TK, Kang LS (2011) Response surface methodological approach to optimize the coagulation–flocculation process in drinking water treatment. Chem Eng Res Des 89:1126–1135CrossRef
Zurück zum Zitat Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and  the bioconversion of pretreated mixed softwood biomass. Biomass Bioenerg 81:1–8CrossRef Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and  the bioconversion of pretreated mixed softwood biomass. Biomass Bioenerg 81:1–8CrossRef
Zurück zum Zitat Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Biores Technol 102(17):7959–7965CrossRef Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Biores Technol 102(17):7959–7965CrossRef
Zurück zum Zitat Weerachanchai P, Leong SSJ, Chang MW, Ching CB, Lee J-M (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459CrossRef Weerachanchai P, Leong SSJ, Chang MW, Ching CB, Lee J-M (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459CrossRef
Zurück zum Zitat Wendler F, Todi L-N, Meister F (2012) Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 528:76–84CrossRef Wendler F, Todi L-N, Meister F (2012) Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 528:76–84CrossRef
Zurück zum Zitat Yoon LW, Ngoh GC, Chua ASM (2011) Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J Chem Technol Biotechnol 86:134–138 Yoon LW, Ngoh GC, Chua ASM (2011) Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J Chem Technol Biotechnol 86:134–138
Zurück zum Zitat Yoon LW, Ang TN, Ngoh GC, Chua ASM (2012) Regression analysis on ionic liquid pretreatment of sugarcane bagasse and assessment of structural changes. Biomass Bioenerg 36:160–169CrossRef Yoon LW, Ang TN, Ngoh GC, Chua ASM (2012) Regression analysis on ionic liquid pretreatment of sugarcane bagasse and assessment of structural changes. Biomass Bioenerg 36:160–169CrossRef
Zurück zum Zitat Yuan TQ, You TT, Wang W, Xu F, Sun RC (2013) Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 2: characterization of lignin and hemicelluloses. Bioresour Technol 136:345–350CrossRef Yuan TQ, You TT, Wang W, Xu F, Sun RC (2013) Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 2: characterization of lignin and hemicelluloses. Bioresour Technol 136:345–350CrossRef
Zurück zum Zitat Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100:2580–2587CrossRef Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100:2580–2587CrossRef
Zurück zum Zitat Zhang P, Dong S-J, Ma H-H, Zhang B-X, Wang Y-F, Hu X-M (2015) Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind Crop Prod 76:688–696CrossRef Zhang P, Dong S-J, Ma H-H, Zhang B-X, Wang Y-F, Hu X-M (2015) Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind Crop Prod 76:688–696CrossRef
Metadaten
Titel
Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment
verfasst von
Koel Saha
Jhilly Dasgupta
Sudip Chakraborty
Felipe Antonio Fernandes Antunes
Jaya Sikder
Stefano Curcio
Julio Cesar dos Santos
Hassan A. Arafat
Silvio Silvério da Silva
Publikationsdatum
15.05.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1330-x

Weitere Artikel der Ausgabe 8/2017

Cellulose 8/2017 Zur Ausgabe