Skip to main content
Erschienen in: Cellulose 1/2018

10.11.2017 | Original Paper

Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer

verfasst von: Chandravati Yadav, Arun Saini, Pradip K. Maji

Erschienen in: Cellulose | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanofibres (CNFs) obtained from waste mango wood scrap were used for the preparation of nanocomposites with SEBS (poly[styrene-(ethylene-co-butylene)-styrene]) and SEBS-g-MA (SEBS-maleic anhydride grafted). Results revealed the incompatibility of CNFs with unmodified SEBS due to the lack of interaction between polar and nonpolar groups. The polar maleic anhydride groups in SEBS-g-MA (mSEBS) demonstrated a strong interfacial interaction with CNFs showing a compatible association. Nanocomposite films with very minute loading of CNFs [0.005 phr (parts per hundred resin)] resulted in a substantial increment in Young’s modulus (98% increment) and tensile strength (70% improvement) as compared to neat mSEBS film along with increment in elongation at break. The nanocomposite films showed the integration of CNFs as an interwoven thread-like structure in the polymer matrix at 0.001 phr. Polymer coated continuous foam/porous network microstructure was observed at 0.005 phr loading.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381CrossRef Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381CrossRef
Zurück zum Zitat Auad ML, Mosiewicki MA, Richardson T et al (2010) Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J Appl Polym Sci 115:1215–1225CrossRef Auad ML, Mosiewicki MA, Richardson T et al (2010) Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J Appl Polym Sci 115:1215–1225CrossRef
Zurück zum Zitat Balsamo V, Lorenzo AT, Müller AJ, Corona-Galván S, Fraga Trillo LM, Santa Quiteria VR (2006) Structure, properties and applications of ABA and ABC triblock copolymers with hydrogenated polybutadiene blocks. In: Lazzari M, Liu G, Lecommandoux S (eds) Block copolymers in nanoscience. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 367–389 Balsamo V, Lorenzo AT, Müller AJ, Corona-Galván S, Fraga Trillo LM, Santa Quiteria VR (2006) Structure, properties and applications of ABA and ABC triblock copolymers with hydrogenated polybutadiene blocks. In: Lazzari M, Liu G, Lecommandoux S (eds) Block copolymers in nanoscience. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 367–389
Zurück zum Zitat Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRef Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRef
Zurück zum Zitat Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28 Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28
Zurück zum Zitat Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652CrossRef Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652CrossRef
Zurück zum Zitat Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef
Zurück zum Zitat Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRef Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRef
Zurück zum Zitat Famá L, Gerschenson L, Goyanes S (2009) Starch-vegetable fibre composites to protect food products. Carbohydr Polym 75:230–235CrossRef Famá L, Gerschenson L, Goyanes S (2009) Starch-vegetable fibre composites to protect food products. Carbohydr Polym 75:230–235CrossRef
Zurück zum Zitat Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRef Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRef
Zurück zum Zitat Frone AN, Panaitescu DM, Spataru DD et al (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6:487–512 Frone AN, Panaitescu DM, Spataru DD et al (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6:487–512
Zurück zum Zitat Ganguly A, Bhowmick AK (2009) Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites. J Mater Sci 44:903–918CrossRef Ganguly A, Bhowmick AK (2009) Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites. J Mater Sci 44:903–918CrossRef
Zurück zum Zitat Ganguly A, De Sarkar M, Bhowmick AK (2006) Thermoplastic elastomeric nanocomposites from poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer and clay: preparation and characterization. J Appl Polym Sci 100:2040–2052CrossRef Ganguly A, De Sarkar M, Bhowmick AK (2006) Thermoplastic elastomeric nanocomposites from poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer and clay: preparation and characterization. J Appl Polym Sci 100:2040–2052CrossRef
Zurück zum Zitat Grigorescu RM, Ciuprina F, Ghioca P et al (2016) Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface. J Phys Chem Solids 89:97–106CrossRef Grigorescu RM, Ciuprina F, Ghioca P et al (2016) Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface. J Phys Chem Solids 89:97–106CrossRef
Zurück zum Zitat He H, Li K, Wang J et al (2011) Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater Des 32:4521–4527CrossRef He H, Li K, Wang J et al (2011) Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater Des 32:4521–4527CrossRef
Zurück zum Zitat Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980
Zurück zum Zitat Kakou CA, Essabir H, Bensalah M-O et al (2015) Hybrid composites based on polyethylene and coir/oil palm fibers. J Reinf Plast Compos 34:1684–1697CrossRef Kakou CA, Essabir H, Bensalah M-O et al (2015) Hybrid composites based on polyethylene and coir/oil palm fibers. J Reinf Plast Compos 34:1684–1697CrossRef
Zurück zum Zitat Kazayawoko M, Balatinecz JJ, Woodhams RT (1997) Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Polym Sci 66:1163–1173CrossRef Kazayawoko M, Balatinecz JJ, Woodhams RT (1997) Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Polym Sci 66:1163–1173CrossRef
Zurück zum Zitat Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRef Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRef
Zurück zum Zitat Kwee T, Mauritz KA, Beyer FL (2005) Poly[styrene-b-maleated (ethylene/butylene)-b-styrene] (mSEBS) block copolymers and mSEBS/inorganic nanocomposites: I. Morphology and FTIR characterization. Polymer (Guildf) 46:3871–3883CrossRef Kwee T, Mauritz KA, Beyer FL (2005) Poly[styrene-b-maleated (ethylene/butylene)-b-styrene] (mSEBS) block copolymers and mSEBS/inorganic nanocomposites: I. Morphology and FTIR characterization. Polymer (Guildf) 46:3871–3883CrossRef
Zurück zum Zitat Latko P, Bogucka A, Boczkowska A (2015) Characterization of thermoplastic elastomers based composites doped with carbon black. Int J Mech Eng Autom 2:171–176 Latko P, Bogucka A, Boczkowska A (2015) Characterization of thermoplastic elastomers based composites doped with carbon black. Int J Mech Eng Autom 2:171–176
Zurück zum Zitat Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly [styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593CrossRef Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly [styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593CrossRef
Zurück zum Zitat Maji PK, Bhowmick AK (2009) Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J Polym Sci Part A Polym Chem 47:731–745CrossRef Maji PK, Bhowmick AK (2009) Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J Polym Sci Part A Polym Chem 47:731–745CrossRef
Zurück zum Zitat Maji PK, Guchhait PK, Bhowmick AK (2009) Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites. ACS Appl Mater Interfaces 1:289–300CrossRef Maji PK, Guchhait PK, Bhowmick AK (2009) Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites. ACS Appl Mater Interfaces 1:289–300CrossRef
Zurück zum Zitat Maji PK, Das NK, Bhowmick AK (2010) Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer (Guildf) 51:1100–1110CrossRef Maji PK, Das NK, Bhowmick AK (2010) Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer (Guildf) 51:1100–1110CrossRef
Zurück zum Zitat Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRef Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Ocando C, Tercjak A, Martín MD et al (2009) Morphology development in thermosetting mixtures through the variation on chemical functionalization degree of poly(styrene-b-butadiene) diblock copolymer modifiers. Thermomechanical properties. Macromolecules 42:6215–6224CrossRef Ocando C, Tercjak A, Martín MD et al (2009) Morphology development in thermosetting mixtures through the variation on chemical functionalization degree of poly(styrene-b-butadiene) diblock copolymer modifiers. Thermomechanical properties. Macromolecules 42:6215–6224CrossRef
Zurück zum Zitat Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589CrossRef Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589CrossRef
Zurück zum Zitat Pattanayak A, Jana SC (2005a) Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer (Guildf) 46:3275–3288CrossRef Pattanayak A, Jana SC (2005a) Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer (Guildf) 46:3275–3288CrossRef
Zurück zum Zitat Pattanayak A, Jana SC (2005b) Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer (Guildf) 46:5183–5193CrossRef Pattanayak A, Jana SC (2005b) Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer (Guildf) 46:5183–5193CrossRef
Zurück zum Zitat Pei A, Malho JM, Ruokolainen J et al (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef Pei A, Malho JM, Ruokolainen J et al (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef
Zurück zum Zitat Pelissari FM, Sobral PJDA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRef Pelissari FM, Sobral PJDA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRef
Zurück zum Zitat Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube—polystyrene composites. Appl Phys Lett 76:2868CrossRef Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube—polystyrene composites. Appl Phys Lett 76:2868CrossRef
Zurück zum Zitat Reddy MM, Vivekanandhan S, Misra M et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689CrossRef Reddy MM, Vivekanandhan S, Misra M et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689CrossRef
Zurück zum Zitat Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
Zurück zum Zitat Stoyanov H, Kollosche M, McCarthy DN, Kofod G (2010) Molecular composites with enhanced energy density for electroactive polymers. J Mater Chem 20:7558–7564CrossRef Stoyanov H, Kollosche M, McCarthy DN, Kofod G (2010) Molecular composites with enhanced energy density for electroactive polymers. J Mater Chem 20:7558–7564CrossRef
Zurück zum Zitat Stoyanov H, Kollosche M, Risse S et al (2011) Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter 7:194–202CrossRef Stoyanov H, Kollosche M, Risse S et al (2011) Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter 7:194–202CrossRef
Zurück zum Zitat Stuart BH (ed) (2004) Organic molecules. In: Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, NJ, pp 70–94 Stuart BH (ed) (2004) Organic molecules. In: Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, NJ, pp 70–94
Zurück zum Zitat Toivonen MS, Kurki-Suonio S, Schacher FH et al (2015) Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Biomacromol 16:1062–1071CrossRef Toivonen MS, Kurki-Suonio S, Schacher FH et al (2015) Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Biomacromol 16:1062–1071CrossRef
Zurück zum Zitat Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751CrossRef Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751CrossRef
Zurück zum Zitat Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers I: blends and interpenetrating networks. Springer, BerlinCrossRef Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers I: blends and interpenetrating networks. Springer, BerlinCrossRef
Zurück zum Zitat Wu CN, Saito T, Fujisawa S et al (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromol 13:1927–1932CrossRef Wu CN, Saito T, Fujisawa S et al (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromol 13:1927–1932CrossRef
Zurück zum Zitat Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals versus cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals versus cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef
Zurück zum Zitat Yadav C, Saini A, Maji PK (2017) Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr Polym 165:276–284CrossRef Yadav C, Saini A, Maji PK (2017) Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr Polym 165:276–284CrossRef
Zurück zum Zitat Yao X, Qi X, He Y et al (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6:2497–2507CrossRef Yao X, Qi X, He Y et al (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6:2497–2507CrossRef
Zurück zum Zitat Zalakain I, Ramos JA, Fernandez R et al (2011) Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate. Thin Solid Films 519:1882–1885CrossRef Zalakain I, Ramos JA, Fernandez R et al (2011) Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate. Thin Solid Films 519:1882–1885CrossRef
Metadaten
Titel
Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer
verfasst von
Chandravati Yadav
Arun Saini
Pradip K. Maji
Publikationsdatum
10.11.2017
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1567-4

Weitere Artikel der Ausgabe 1/2018

Cellulose 1/2018 Zur Ausgabe