Skip to main content
Erschienen in: Cellulose 5/2019

09.02.2019 | Original Research

Cellulose nanosheets formed by mild additive-free ball milling

verfasst von: Yunxiu Zhang, Shigenori Kuga, Min Wu, Yong Huang

Erschienen in: Cellulose | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanosheets similar to those obtained by milling with silicone oil (Zhao et al. in Cellulose 23:2809–2818, 2016) were obtained by mild additive-free milling followed by dispersion in ethanol. Typical nanosheets were of 4 nm thickness, possibly formed by monolayer association of elementary fibrils. The thickness decreased with prolonged milling to 2 nm or less, and the thinnest sheets observed were about 0.4 nm, corresponding to monomolecular layer of cellulose. Further milling caused disappearance of nanosheets due to complete decrystallization. This observation indicates that nanosheet formation is an intermediate stage of decrystallization of cellulose.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261CrossRef Abe K (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261CrossRef
Zurück zum Zitat Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRef Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRef
Zurück zum Zitat Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441CrossRef Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441CrossRef
Zurück zum Zitat Avolio R, Bonadies I, Capitani D, Errico ME, Gentile G, Avella M (2012) A multitechnique approach to assess the effect of ball milling on cellulose. Carbohyd Polym 87:265–273CrossRef Avolio R, Bonadies I, Capitani D, Errico ME, Gentile G, Avella M (2012) A multitechnique approach to assess the effect of ball milling on cellulose. Carbohyd Polym 87:265–273CrossRef
Zurück zum Zitat Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef
Zurück zum Zitat Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRefPubMed Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRefPubMed
Zurück zum Zitat Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A Mol Biomol Spectrosc 53:2383–2392CrossRef Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A Mol Biomol Spectrosc 53:2383–2392CrossRef
Zurück zum Zitat Eronen P, Osterberg M, Jaaskelainen A-S (2009) Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16:167–178CrossRef Eronen P, Osterberg M, Jaaskelainen A-S (2009) Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16:167–178CrossRef
Zurück zum Zitat Fengel D (1992) Characterization of cellulose by deconvoluting the oh valency range in FTIR spectra. Holzforschung 46:283–288CrossRef Fengel D (1992) Characterization of cellulose by deconvoluting the oh valency range in FTIR spectra. Holzforschung 46:283–288CrossRef
Zurück zum Zitat Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47:103–108CrossRef Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47:103–108CrossRef
Zurück zum Zitat Hamad WY (2008) Studies of deformation processes in cellulosics using Raman microscopy. In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell Publishing Ltd., Oxford, pp 121–137 Hamad WY (2008) Studies of deformation processes in cellulosics using Raman microscopy. In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell Publishing Ltd., Oxford, pp 121–137
Zurück zum Zitat Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. Chemsuschem 5:2319–2322CrossRefPubMed Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. Chemsuschem 5:2319–2322CrossRefPubMed
Zurück zum Zitat Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759CrossRefPubMed Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759CrossRefPubMed
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefPubMed Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefPubMed
Zurück zum Zitat Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir ACS J Surf Colloids 26:17919–17925CrossRef Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir ACS J Surf Colloids 26:17919–17925CrossRef
Zurück zum Zitat Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y (2017) Thin cellulose nanofiber from corncob cellulose and its performance in transparent nanopaper. ACS Sustain Chem Eng 5:2529–2534CrossRef Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y (2017) Thin cellulose nanofiber from corncob cellulose and its performance in transparent nanopaper. ACS Sustain Chem Eng 5:2529–2534CrossRef
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393CrossRefPubMed Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393CrossRefPubMed
Zurück zum Zitat Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16:1025–1032CrossRef Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16:1025–1032CrossRef
Zurück zum Zitat Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659CrossRefPubMed Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659CrossRefPubMed
Zurück zum Zitat Marechal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef Marechal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef
Zurück zum Zitat Mohan T, Spirk S, Kargl R, Doliska A, Vesel A, Salzmann I, Resel R, Ribitsch V, Stana-Kleinschek K (2012) Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter 8:9807–9815CrossRef Mohan T, Spirk S, Kargl R, Doliska A, Vesel A, Salzmann I, Resel R, Ribitsch V, Stana-Kleinschek K (2012) Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter 8:9807–9815CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
Zurück zum Zitat Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRef Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRef
Zurück zum Zitat Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc Math Phys Eng Sci 376(2112):20170047CrossRef Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc Math Phys Eng Sci 376(2112):20170047CrossRef
Zurück zum Zitat Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of x-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of x-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed
Zurück zum Zitat Qian XH, Ding SY, Nimlos MR, Johnson DK, Himmel ME (2005) Atomic and electronic structures of molecular crystalline cellulose I beta: a first-principles investigation. Macromolecules 38:10580–10589CrossRef Qian XH, Ding SY, Nimlos MR, Johnson DK, Himmel ME (2005) Atomic and electronic structures of molecular crystalline cellulose I beta: a first-principles investigation. Macromolecules 38:10580–10589CrossRef
Zurück zum Zitat Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348CrossRef Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348CrossRef
Zurück zum Zitat Sato K, Mochizuki H, Okajima K, Yamane C (2004) Effects of hydrophobic solvents on x-ray diffraction patterns of regenerated cellulose membrane. Polym J 36:478–482CrossRef Sato K, Mochizuki H, Okajima K, Yamane C (2004) Effects of hydrophobic solvents on x-ray diffraction patterns of regenerated cellulose membrane. Polym J 36:478–482CrossRef
Zurück zum Zitat Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231CrossRef Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231CrossRef
Zurück zum Zitat Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef
Zurück zum Zitat Segal L, Creely JJ Jr, Martin AE (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ Jr, Martin AE (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794CrossRef
Zurück zum Zitat Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed Engl 51:6886–6890CrossRefPubMed Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed Engl 51:6886–6890CrossRefPubMed
Zurück zum Zitat Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418CrossRefPubMedPubMedCentral Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhao M, Kuga S, Jiang S, Wu M, Huang Y (2016) Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23:2809–2818CrossRef Zhao M, Kuga S, Jiang S, Wu M, Huang Y (2016) Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23:2809–2818CrossRef
Zurück zum Zitat Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339CrossRef Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339CrossRef
Metadaten
Titel
Cellulose nanosheets formed by mild additive-free ball milling
verfasst von
Yunxiu Zhang
Shigenori Kuga
Min Wu
Yong Huang
Publikationsdatum
09.02.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02282-7

Weitere Artikel der Ausgabe 5/2019

Cellulose 5/2019 Zur Ausgabe