Skip to main content
Erschienen in: Cellulose 5/2019

25.02.2019 | Original Research

Choline chloride-based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers

verfasst von: Wang Yu, Chaoyun Wang, Yongjian Yi, Wanlai Zhou, Hongying Wang, Yuanru Yang, Zhijian Tan

Erschienen in: Cellulose | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a new type of green solvents, deep eutectic solvents (DESs) were used as pretreatment media for the nanofibrillation of ramie fibers (RFs). Two DESs, choline chloride-oxalic acid dihydrate (CO) and choline chloride-urea (CU), were formed at 100 °C and then applied to decompose RFs. The DES-pretreated fibers were nanofibrillated using a planetary ball mill, and their properties were analyzed. During the DES pretreatment, CU DES could only dissolve some of hemicelluloses in raw RFs, while CO DES could degrade some oligosaccharides and a part of amorphous cellulose to loosen the fiber structure. Therefore, only the CO DES pretreatment could significantly enhance nanofibrillation of the RFs with a low hemicellulose content in this study, as indicated by the decrease of milling time (from 11 to 5 h) to obtain desirable cellulose nanofibrils (CNFs). After 7 h CO DES pretreatment at room temperature and a subsequent ball milling process, a turbid and gel-like CNF suspension with a mean equivalent spherical diameter of 262 nm was obtained from RFs, and the mass yield of CNFs reached 94.06%. The CNFs also showed a crystallinity index of 66.51% and a thermal stability with Tmax = 322.6 °C, and the produced CNF film had a tensile strength of 52 MPa. Overall, the CO DES pretreatment has great potential for use in the production of CNFs from RFs.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665PubMedCrossRef Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665PubMedCrossRef
Zurück zum Zitat Abdul Khalil HPS, Davoudpour Y, Saurabh CK, Hossain MS, Adnan AS, Dungani R, Paridah MT, Sarker MZI, Fazita MRN, Syakir MI, Haafiz MKM (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sust Energy Rev 64:823–836CrossRef Abdul Khalil HPS, Davoudpour Y, Saurabh CK, Hossain MS, Adnan AS, Dungani R, Paridah MT, Sarker MZI, Fazita MRN, Syakir MI, Haafiz MKM (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sust Energy Rev 64:823–836CrossRef
Zurück zum Zitat Abo-Hamad A, Hayyan M, Alssaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567CrossRef Abo-Hamad A, Hayyan M, Alssaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567CrossRef
Zurück zum Zitat Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17(4):721–733CrossRef Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17(4):721–733CrossRef
Zurück zum Zitat Azrina ZAZ, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam AKMA (2017) Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohydr Polym 162:115–120CrossRef Azrina ZAZ, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam AKMA (2017) Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohydr Polym 162:115–120CrossRef
Zurück zum Zitat Baheti V, Militky J (2013) Reinforcement of wet milled jute nano/micro particles in polyvinyl alcohol films. Fiber Polym 14(1):133–137CrossRef Baheti V, Militky J (2013) Reinforcement of wet milled jute nano/micro particles in polyvinyl alcohol films. Fiber Polym 14(1):133–137CrossRef
Zurück zum Zitat Baheti V, Militky J, Marsalkova M (2013) Mechanical properties of poly lactic acid composite films reinforced with wet milled jute nanofibers. Polym Compos 34(12):2133–2141CrossRef Baheti V, Militky J, Marsalkova M (2013) Mechanical properties of poly lactic acid composite films reinforced with wet milled jute nanofibers. Polym Compos 34(12):2133–2141CrossRef
Zurück zum Zitat Beltramino F, Roncero MB, Torres AL, Vidal T, Valls C (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789CrossRef Beltramino F, Roncero MB, Torres AL, Vidal T, Valls C (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789CrossRef
Zurück zum Zitat Cai YJ, Su SW, Navik R, Wen S, Peng XY, Pervez MN, Lin LN (2018) Cationic modification of ramie fibers in liquid ammonia. Cellulose 25(8):4463–4475CrossRef Cai YJ, Su SW, Navik R, Wen S, Peng XY, Pervez MN, Lin LN (2018) Cationic modification of ramie fibers in liquid ammonia. Cellulose 25(8):4463–4475CrossRef
Zurück zum Zitat Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013) Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J Nat Prod 76(11):2162–2173PubMedCrossRef Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013) Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J Nat Prod 76(11):2162–2173PubMedCrossRef
Zurück zum Zitat De Menezes AJ, Longo E, Leite FL, Dufresne A (2014) Characterization of cellulose nanocrystals grafted with organic acid chloride of different sizes. J Renew Mater 2(4):306–313CrossRef De Menezes AJ, Longo E, Leite FL, Dufresne A (2014) Characterization of cellulose nanocrystals grafted with organic acid chloride of different sizes. J Renew Mater 2(4):306–313CrossRef
Zurück zum Zitat Diop CIK, Lavoie JM (2017) Isolation of nanocrystalline cellulose: a technological route for valorizing recycled Tetra Pak aseptic multilayered food packaging wastes. Waste Biomass Valoriz 8(1):41–56CrossRef Diop CIK, Lavoie JM (2017) Isolation of nanocrystalline cellulose: a technological route for valorizing recycled Tetra Pak aseptic multilayered food packaging wastes. Waste Biomass Valoriz 8(1):41–56CrossRef
Zurück zum Zitat Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr Polym 157:1577–1585PubMedCrossRef Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr Polym 157:1577–1585PubMedCrossRef
Zurück zum Zitat Du CL, Zhao BY, Chen XB, Birbilis N, Yang HY (2016) Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid. Sci Rep 6:29225PubMedPubMedCentralCrossRef Du CL, Zhao BY, Chen XB, Birbilis N, Yang HY (2016) Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid. Sci Rep 6:29225PubMedPubMedCentralCrossRef
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588CrossRef
Zurück zum Zitat Hiasa S, Kumagai A, Endo T, Edashige Y (2016) Prevention of aggregation of pectin-containing cellulose nanofibers prepared from mandarin peel. J Fiber Sci Technol 72(1):17–26CrossRef Hiasa S, Kumagai A, Endo T, Edashige Y (2016) Prevention of aggregation of pectin-containing cellulose nanofibers prepared from mandarin peel. J Fiber Sci Technol 72(1):17–26CrossRef
Zurück zum Zitat Hietala M, Sain S, Oksman K (2017) Highly redispersible sugar beet nanofibers as reinforcement in bionanocomposites. Cellulose 24(5):2177–2189CrossRef Hietala M, Sain S, Oksman K (2017) Highly redispersible sugar beet nanofibers as reinforcement in bionanocomposites. Cellulose 24(5):2177–2189CrossRef
Zurück zum Zitat Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22(1):421–433CrossRef Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22(1):421–433CrossRef
Zurück zum Zitat Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8(6):3753–3759PubMedCrossRef Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8(6):3753–3759PubMedCrossRef
Zurück zum Zitat Jiang W, Song Y, Liu SY, Ben HX, Zhang YM, Zhou CF, Han GT, Ragauskas AJ (2018) A green degumming process of ramie. Ind Crops Prod 120:131–134CrossRef Jiang W, Song Y, Liu SY, Ben HX, Zhang YM, Zhou CF, Han GT, Ragauskas AJ (2018) A green degumming process of ramie. Ind Crops Prod 120:131–134CrossRef
Zurück zum Zitat Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969CrossRef Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969CrossRef
Zurück zum Zitat Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885PubMedCrossRef Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885PubMedCrossRef
Zurück zum Zitat Laitinen O, Ojala J, Sirviö JA, Liimatainen H (2017a) Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose 24(4):1679–1689CrossRef Laitinen O, Ojala J, Sirviö JA, Liimatainen H (2017a) Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose 24(4):1679–1689CrossRef
Zurück zum Zitat Laitinen O, Suopajärvi T, Österberg M, Liimatainen H (2017b) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9(29):25029–25037PubMedCrossRef Laitinen O, Suopajärvi T, Österberg M, Liimatainen H (2017b) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9(29):25029–25037PubMedCrossRef
Zurück zum Zitat Lee BM, Jeun JP, Kang PH, Choi JH, Hong SK (2017) Isolation and characterization of nanocrystalline cellulose from different precursor materials. Fiber Polym 18(2):272–277CrossRef Lee BM, Jeun JP, Kang PH, Choi JH, Hong SK (2017) Isolation and characterization of nanocrystalline cellulose from different precursor materials. Fiber Polym 18(2):272–277CrossRef
Zurück zum Zitat Li ZL, Yu CW (2014) Effect of peroxide and softness modification on properties of ramie fiber. Fiber Polym 15(10):2105–2111CrossRef Li ZL, Yu CW (2014) Effect of peroxide and softness modification on properties of ramie fiber. Fiber Polym 15(10):2105–2111CrossRef
Zurück zum Zitat Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym 78(3):389–395CrossRef Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym 78(3):389–395CrossRef
Zurück zum Zitat Li ZF, Li ZL, Ding RY, Yu CW (2016a) Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. Text Res J 86(5):451–460CrossRef Li ZF, Li ZL, Ding RY, Yu CW (2016a) Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. Text Res J 86(5):451–460CrossRef
Zurück zum Zitat Li ZL, Chen J, Zhou JJ, Zheng L, Pradel KC, Fan X, Guo HY, Wen Z, Yeh MH, Yu CW, Wang ZL (2016b) High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22:548–557CrossRef Li ZL, Chen J, Zhou JJ, Zheng L, Pradel KC, Fan X, Guo HY, Wen Z, Yeh MH, Yu CW, Wang ZL (2016b) High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22:548–557CrossRef
Zurück zum Zitat Li PP, Sirviö JA, Haapala A, Liimatainen H (2017) Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl Mater Interfaces 9(3):2846–2855PubMedCrossRef Li PP, Sirviö JA, Haapala A, Liimatainen H (2017) Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl Mater Interfaces 9(3):2846–2855PubMedCrossRef
Zurück zum Zitat Liimatainen H, Sirviö J, Haapala A, Hormi O, Niinimäki J (2011) Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydr Polym 83(4):2005–2010CrossRef Liimatainen H, Sirviö J, Haapala A, Hormi O, Niinimäki J (2011) Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydr Polym 83(4):2005–2010CrossRef
Zurück zum Zitat Liu YZ, Guo BT, Xia QQ, Meng J, Chen WS, Liu SX, Wang QW, Liu YX, Li J, Yu HP (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5(9):7623–7631CrossRef Liu YZ, Guo BT, Xia QQ, Meng J, Chen WS, Liu SX, Wang QW, Liu YX, Li J, Yu HP (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5(9):7623–7631CrossRef
Zurück zum Zitat Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRef Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRef
Zurück zum Zitat Mazumder BB, Ohtani Y, Cheng Z, Sameshima K (2000) Combination treatment of kenaf bast fiber for high viscosity pulp. J Wood Sci 46(5):364–370CrossRef Mazumder BB, Ohtani Y, Cheng Z, Sameshima K (2000) Combination treatment of kenaf bast fiber for high viscosity pulp. J Wood Sci 46(5):364–370CrossRef
Zurück zum Zitat Mohd Amin KN, Annamalai PK, Morrow IC, Martin D (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5(70):57133–57140CrossRef Mohd Amin KN, Annamalai PK, Morrow IC, Martin D (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5(70):57133–57140CrossRef
Zurück zum Zitat Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef
Zurück zum Zitat Pacaphol K, Aht-Ong D (2017) Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. J Clean Prod 142:1283–1295CrossRef Pacaphol K, Aht-Ong D (2017) Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. J Clean Prod 142:1283–1295CrossRef
Zurück zum Zitat Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80(7):1013–1020CrossRef Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80(7):1013–1020CrossRef
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677PubMedCrossRef Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677PubMedCrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad JR, Conard CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad JR, Conard CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
Zurück zum Zitat Sirviö JA, Visanko M (2017) Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification. J Mater Chem A 5(41):21828–21835CrossRef Sirviö JA, Visanko M (2017) Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification. J Mater Chem A 5(41):21828–21835CrossRef
Zurück zum Zitat Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17(6):3401–3406CrossRef Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17(6):3401–3406CrossRef
Zurück zum Zitat Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17(9):3025–3032PubMedCrossRef Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17(9):3025–3032PubMedCrossRef
Zurück zum Zitat Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082PubMedCrossRef Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082PubMedCrossRef
Zurück zum Zitat Suopajärvi T, Sirviö JA, Liimatainen H (2017) Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydr Polym 169:167–175PubMedCrossRef Suopajärvi T, Sirviö JA, Liimatainen H (2017) Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydr Polym 169:167–175PubMedCrossRef
Zurück zum Zitat Tan ZJ, Wang CY, Yi YJ, Wang HY, Li M, Zhou WL, Tan SY, Li FF (2014) Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Sep Purif Technol 132:396–400CrossRef Tan ZJ, Wang CY, Yi YJ, Wang HY, Li M, Zhou WL, Tan SY, Li FF (2014) Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Sep Purif Technol 132:396–400CrossRef
Zurück zum Zitat TAPPI Standard test method (1999) T230 om-99, Viscosity of pulp (capillary viscometer method) TAPPI Standard test method (1999) T230 om-99, Viscosity of pulp (capillary viscometer method)
Zurück zum Zitat Tian XZ, Yan DD, Lu QX, Jiang X (2017) Cationic surface modification of nanocrystalline cellulose as reinforcements for preparation of the chitosan-based nanocomposite films. Cellulose 24(1):163–174CrossRef Tian XZ, Yan DD, Lu QX, Jiang X (2017) Cationic surface modification of nanocrystalline cellulose as reinforcements for preparation of the chitosan-based nanocomposite films. Cellulose 24(1):163–174CrossRef
Zurück zum Zitat Visanko M, Sirviö JA, Piltonen P, Sliz R, Liimatainen H, Illikainen M (2017) Mechanical fabrication of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. Cellulose 24(10):4173–4187CrossRef Visanko M, Sirviö JA, Piltonen P, Sliz R, Liimatainen H, Illikainen M (2017) Mechanical fabrication of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. Cellulose 24(10):4173–4187CrossRef
Zurück zum Zitat Wagle DV, Zhao H, Baker GA (2014) Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res 47(8):2299–2308PubMedCrossRef Wagle DV, Zhao H, Baker GA (2014) Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res 47(8):2299–2308PubMedCrossRef
Zurück zum Zitat Yang ZZ, Tan ZJ, Li FF, Li XD (2016) An effective method for the extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L.) leaves using acidic ionic liquids. Ind Crops Prod 89:78–86CrossRef Yang ZZ, Tan ZJ, Li FF, Li XD (2016) An effective method for the extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L.) leaves using acidic ionic liquids. Ind Crops Prod 89:78–86CrossRef
Zurück zum Zitat Yokoyama T, Kadla JF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 50(5):1040–1044PubMedCrossRef Yokoyama T, Kadla JF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 50(5):1040–1044PubMedCrossRef
Zurück zum Zitat Zhang QH, Vigier KDO, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146PubMedCrossRef Zhang QH, Vigier KDO, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146PubMedCrossRef
Zurück zum Zitat Zhang LY, Tsuzuki T, Wang XG (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22(3):1729–1741CrossRef Zhang LY, Tsuzuki T, Wang XG (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22(3):1729–1741CrossRef
Metadaten
Titel
Choline chloride-based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers
verfasst von
Wang Yu
Chaoyun Wang
Yongjian Yi
Wanlai Zhou
Hongying Wang
Yuanru Yang
Zhijian Tan
Publikationsdatum
25.02.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02290-7

Weitere Artikel der Ausgabe 5/2019

Cellulose 5/2019 Zur Ausgabe