Skip to main content
Erschienen in: Cellulose 17/2020

19.09.2020 | Original Research

Drying-induced bending deformation of cellulose nanocrystals studied by molecular dynamics simulations

verfasst von: Yu Ogawa, Yoshiharu Nishiyama, Karim Mazeau

Erschienen in: Cellulose | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Drying cellulosic materials from their water-swollen state can collapse their ultrastructure and alter their macroscopic material properties such as mechanical strength and water-retention ability. However, at the single-crystal or molecular level, little is known about the deformation of cellulose upon drying. We thus investigate herein the drying-induced deformation of a cellulose crystal by using an atomistic molecular dynamics simulation that considers a hydrated system composed of two short cellulose crystals, a lower one fixed to a flat substrate and an upper one free to deform. To mimic vacuum drying, the water is gradually removed from the system. As the drying proceeds, the upper cellulose crystal bends and forms a tight contact with the lower cellulose crystal. This result underlines the importance of lateral deformation of cellulose crystals in the collapse of the cellulose ultrastructure and provides insights into the molecular mechanisms responsible for modifying the properties of cellulose materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abraham MJ, Murtola T, Shulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25CrossRef Abraham MJ, Murtola T, Shulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25CrossRef
Zurück zum Zitat Beaumont M, König J, Opietnik M, Potthast A, Rosenau T (2017) Drying of a cellulose II gel: effect of physical modification and redispersibility in water. Cellulose 24:1199–1209CrossRef Beaumont M, König J, Opietnik M, Potthast A, Rosenau T (2017) Drying of a cellulose II gel: effect of physical modification and redispersibility in water. Cellulose 24:1199–1209CrossRef
Zurück zum Zitat Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Springer, Dordrecht, pp 331–342CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Springer, Dordrecht, pp 331–342CrossRef
Zurück zum Zitat Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef
Zurück zum Zitat Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101/1–014101/7CrossRef Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101/1–014101/7CrossRef
Zurück zum Zitat Chen P, Nishiyama Y, Mazeau K (2014) Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs. Cellulose 21:2207–2217CrossRef Chen P, Nishiyama Y, Mazeau K (2014) Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs. Cellulose 21:2207–2217CrossRef
Zurück zum Zitat Chen P, Ogawa Y, Nishiyama Y, Ismail AE, Mazeau K (2016) Linear, non-linear and plastic bending deformation of cellulose nanocrystals. Phys Chem Chem Phys 18:19880–19887CrossRef Chen P, Ogawa Y, Nishiyama Y, Ismail AE, Mazeau K (2016) Linear, non-linear and plastic bending deformation of cellulose nanocrystals. Phys Chem Chem Phys 18:19880–19887CrossRef
Zurück zum Zitat Chen P, Ogawa Y, Nishiyama Y, Ismail AE, Mazeau K (2018) Iα to Iβ mechano-conversion and amorphization in native cellulose simulated by crystal bending. Cellulose 25:4345–4355CrossRef Chen P, Ogawa Y, Nishiyama Y, Ismail AE, Mazeau K (2018) Iα to Iβ mechano-conversion and amorphization in native cellulose simulated by crystal bending. Cellulose 25:4345–4355CrossRef
Zurück zum Zitat Chen P, Terrenzi C, Furó I, Berglund LA, Wohlert J (2019) Quantifying localized macromolecular dynamics within hydrated cellulose fibril aggregates. Macromolecules 52:7278–7288CrossRef Chen P, Terrenzi C, Furó I, Berglund LA, Wohlert J (2019) Quantifying localized macromolecular dynamics within hydrated cellulose fibril aggregates. Macromolecules 52:7278–7288CrossRef
Zurück zum Zitat Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO mediated oxidation. Biomacromolecules 10:162–165CrossRef Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO mediated oxidation. Biomacromolecules 10:162–165CrossRef
Zurück zum Zitat Giacomozzi DE, Joutsimo O (2017) Drying temperature and hornification of industrial never-dried Pinus radiata Pulps. 2. Voith Sulzer Refining. BioResources 12:1532–1547CrossRef Giacomozzi DE, Joutsimo O (2017) Drying temperature and hornification of industrial never-dried Pinus radiata Pulps. 2. Voith Sulzer Refining. BioResources 12:1532–1547CrossRef
Zurück zum Zitat Häggkvist M, Li TQ, Ödberg L (1998) Effects of drying and pressing on the pore structure in the cellulose fibre wall studied by 1H and 2H NMR relaxation. Cellulose 5:33–49CrossRef Häggkvist M, Li TQ, Ödberg L (1998) Effects of drying and pressing on the pore structure in the cellulose fibre wall studied by 1H and 2H NMR relaxation. Cellulose 5:33–49CrossRef
Zurück zum Zitat Hansen HS, Huenenberger PH (2011) A re-optimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32:998–1032CrossRef Hansen HS, Huenenberger PH (2011) A re-optimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32:998–1032CrossRef
Zurück zum Zitat Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453CrossRef Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453CrossRef
Zurück zum Zitat Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRef Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRef
Zurück zum Zitat Hoepfner S, Ratka L, Milow B (2008) Synthesis and characterization of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRef Hoepfner S, Ratka L, Milow B (2008) Synthesis and characterization of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRef
Zurück zum Zitat Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314CrossRef Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314CrossRef
Zurück zum Zitat Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A 240:63–67CrossRef Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A 240:63–67CrossRef
Zurück zum Zitat Lovikka VA, Khanjani P, Väisänen S, Vuorinen T, Maloney TC (2016) Porosity of wood pulp fibers in the wet and highly open dry state. Microporous Mesoporous Mater 234:326–335CrossRef Lovikka VA, Khanjani P, Väisänen S, Vuorinen T, Maloney TC (2016) Porosity of wood pulp fibers in the wet and highly open dry state. Microporous Mesoporous Mater 234:326–335CrossRef
Zurück zum Zitat Mattos BD, Tardy BL, Rojas OJ (2019) Accounting for substrate interactions in the measurement of the dimensions of cellulose nanofibrils. Biomacromolecules 20:2657–2665CrossRef Mattos BD, Tardy BL, Rojas OJ (2019) Accounting for substrate interactions in the measurement of the dimensions of cellulose nanofibrils. Biomacromolecules 20:2657–2665CrossRef
Zurück zum Zitat Minor JL (1994) Hornification—its origin and meaning. Prog Pap Recycl 3:93–95 Minor JL (1994) Hornification—its origin and meaning. Prog Pap Recycl 3:93–95
Zurück zum Zitat Molnár G, Rodney D, Martoïa F, Dumont PJJ, Nishiyama Y, Mazeau K, Orgéas L (2018) Cellulose crystals plastify by localized shear. Proc Natl Acad Sci USA 115:7260–7265CrossRef Molnár G, Rodney D, Martoïa F, Dumont PJJ, Nishiyama Y, Mazeau K, Orgéas L (2018) Cellulose crystals plastify by localized shear. Proc Natl Acad Sci USA 115:7260–7265CrossRef
Zurück zum Zitat Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52CrossRef Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Ogawa Y (2019) Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals. Nanoscale 11:21767–21774CrossRef Ogawa Y (2019) Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals. Nanoscale 11:21767–21774CrossRef
Zurück zum Zitat Oksanen T, Buchert J, Viikari L (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51:355–360CrossRef Oksanen T, Buchert J, Viikari L (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51:355–360CrossRef
Zurück zum Zitat Paajanen A, Ceccherini S, Maloney T, Ketoja JA (2019) Chirality and bound water in the hierarchical cellulose structure. Cellulose 26:5877–5892CrossRef Paajanen A, Ceccherini S, Maloney T, Ketoja JA (2019) Chirality and bound water in the hierarchical cellulose structure. Cellulose 26:5877–5892CrossRef
Zurück zum Zitat Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103CrossRef Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103CrossRef
Zurück zum Zitat Peng Y, Gardner DJ, Han Y (2012) Dryomg cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRef Peng Y, Gardner DJ, Han Y (2012) Dryomg cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRef
Zurück zum Zitat PyMOL. The PyMOL molecular graphics system, Version 2.1.0 Schrödinger, LCC PyMOL. The PyMOL molecular graphics system, Version 2.1.0 Schrödinger, LCC
Zurück zum Zitat Rämänen P, Penttilä P, Svedström K, Maunu SL, Serimaa R (2012) The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19:901–912CrossRef Rämänen P, Penttilä P, Svedström K, Maunu SL, Serimaa R (2012) The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19:901–912CrossRef
Metadaten
Titel
Drying-induced bending deformation of cellulose nanocrystals studied by molecular dynamics simulations
verfasst von
Yu Ogawa
Yoshiharu Nishiyama
Karim Mazeau
Publikationsdatum
19.09.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 17/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03451-9

Weitere Artikel der Ausgabe 17/2020

Cellulose 17/2020 Zur Ausgabe