Skip to main content
Erschienen in: Cellulose 3/2021

06.01.2021 | Original Research

Characterization of the supramolecular structures of cellulose nanocrystals of different origins

verfasst von: Umesh P. Agarwal, Richard S. Reiner, Sally A. Ralph, Jeffery Catchmark, Kai Chi, E. Johan Foster, Christopher G. Hunt, Carlos Baez, Rebecca E. Ibach, Kolby C. Hirth

Erschienen in: Cellulose | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Properties of cellulose nanocrystals (CNCs) depend upon their supramolecular structures, which are important to understand in order to optimize their applications. In this investigation, the structures of CNCs produced upon 48–64% H2SO4 hydrolysis of hydrothermally-treated poplar, bleached kraft pulp, cotton microcrystalline cellulose, bacterial cellulose, tunicin, and cladophora cellulose were comparatively analyzed. TEM provided information on the morphological aspects. Raman, MAS-NMR, and XRD provided information on one aspect of the supramolecular organization, namely, crystallinity (CrI). Other characteristics of supramolecular structure were analyzed by various Raman methods, namely, accessibility to water, exocyclic CH2OH conformation ratio, and chain conformation disorder (CCONDIS)—the last method was developed in the present study. In general, CNCs retained the crystallinity of the starting material irrespective of the measurement method of CrI. Additionally, it was found that crystallite size and supramolecular organization influenced CrI as well. These analyses further indicated that poplar- and pulp-CNCs had significantly higher water accessibility as compared with CNCs from cladophora, bacterial, tunicin, and cotton MCC CNCs, implying higher molecular disorder, which was also reflected in measurements of CH2OH conformation ratio and CCONDIS. The findings indicate that significant differences among the CNCs seem to arise largely from differences between the starting materials. Additionally, considering that CNCs can have very different morphologies and structural properties depending upon how they are produced, the analyses carried out here can characterize such CNCs and estimate their applications.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616PubMedCrossRef Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616PubMedCrossRef
Zurück zum Zitat Agarwal UP (2017) Raman spectroscopy in the analysis of cellulose nanomaterials, In: Agarwal UP, Atalla RH, Isogai A (eds.) Nanocelluloses: their preparation, properties, and applications, ACS symp. Series, American Chemical Society, pp 75–90 Agarwal UP (2017) Raman spectroscopy in the analysis of cellulose nanomaterials, In: Agarwal UP, Atalla RH, Isogai A (eds.) Nanocelluloses: their preparation, properties, and applications, ACS symp. Series, American Chemical Society, pp 75–90
Zurück zum Zitat Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1924CrossRef Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1924CrossRef
Zurück zum Zitat Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144CrossRef Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144CrossRef
Zurück zum Zitat Agarwal UP, Ralph SA, Reiner RS, Hunt CG, Baez C, Ibach R, Hirth KC (2018a) Production of high lignin-containing and lignin-free cellulose nanocrystals from wood. Cellulose 25:5791–5805CrossRef Agarwal UP, Ralph SA, Reiner RS, Hunt CG, Baez C, Ibach R, Hirth KC (2018a) Production of high lignin-containing and lignin-free cellulose nanocrystals from wood. Cellulose 25:5791–5805CrossRef
Zurück zum Zitat Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr Polym 190:260–270CrossRef Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr Polym 190:260–270CrossRef
Zurück zum Zitat Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRef Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRef
Zurück zum Zitat Agarwal UP, Reiner RS, Ralph SA (2013) Estimation of cellulose crystallinity of lignocelluloses using near-IR FT–Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. J Agric Food Chem 61:103–113PubMedCrossRef Agarwal UP, Reiner RS, Ralph SA (2013) Estimation of cellulose crystallinity of lignocelluloses using near-IR FT–Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. J Agric Food Chem 61:103–113PubMedCrossRef
Zurück zum Zitat Angle´s MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRef Angle´s MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRef
Zurück zum Zitat Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261CrossRef Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261CrossRef
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285PubMedCrossRef Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285PubMedCrossRef
Zurück zum Zitat Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25:7675–7685PubMedCrossRef Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25:7675–7685PubMedCrossRef
Zurück zum Zitat Azizi MASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316CrossRef Azizi MASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316CrossRef
Zurück zum Zitat Bian H, Chen L, Dai H, Zhu JY (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176PubMedCrossRef Bian H, Chen L, Dai H, Zhu JY (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176PubMedCrossRef
Zurück zum Zitat Bondeson D, Mathew AP, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef Bondeson D, Mathew AP, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef
Zurück zum Zitat Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2015) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114CrossRef Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2015) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114CrossRef
Zurück zum Zitat Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRef Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRef
Zurück zum Zitat Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843CrossRef Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843CrossRef
Zurück zum Zitat Chi K, Catchmark JM (2017) The influences of added polysaccharides on the properties of bacterial crystalline nanocellulose. Nanoscale 9:15144–15158PubMedCrossRef Chi K, Catchmark JM (2017) The influences of added polysaccharides on the properties of bacterial crystalline nanocellulose. Nanoscale 9:15144–15158PubMedCrossRef
Zurück zum Zitat Dahlke B, Larbig H, Scherzer HD, Poltrock R (1998) Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plastics 34:361–379CrossRef Dahlke B, Larbig H, Scherzer HD, Poltrock R (1998) Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plastics 34:361–379CrossRef
Zurück zum Zitat Domingues R, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346CrossRef Domingues R, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346CrossRef
Zurück zum Zitat Dunlop MJ, Acharya B, Bissessur R (2020) Study of plant and tunicate based nanocrystalline cellulose in hybrid polymeric nanocomposites. Cellulose 27:249–261CrossRef Dunlop MJ, Acharya B, Bissessur R (2020) Study of plant and tunicate based nanocrystalline cellulose in hybrid polymeric nanocomposites. Cellulose 27:249–261CrossRef
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef
Zurück zum Zitat Fang L, Catchmark JM (2014) Structure characterization of native cellulose during dehydration and rehydration. Cellulose 21:3951–3963CrossRef Fang L, Catchmark JM (2014) Structure characterization of native cellulose during dehydration and rehydration. Cellulose 21:3951–3963CrossRef
Zurück zum Zitat Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679PubMedCrossRef Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679PubMedCrossRef
Zurück zum Zitat Frost B, Foster EJ (2019) Replication of annulus fibrosus through fabrication and characterization of polyurethane and cellulose nanocrystal composite scaffolds. Nanocomposites 5:13–27CrossRef Frost B, Foster EJ (2019) Replication of annulus fibrosus through fabrication and characterization of polyurethane and cellulose nanocrystal composite scaffolds. Nanocomposites 5:13–27CrossRef
Zurück zum Zitat Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87:1026–1037CrossRef Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87:1026–1037CrossRef
Zurück zum Zitat Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89CrossRef Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89CrossRef
Zurück zum Zitat Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30CrossRef Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30CrossRef
Zurück zum Zitat Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542PubMedCrossRef Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542PubMedCrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRef
Zurück zum Zitat Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611CrossRef Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611CrossRef
Zurück zum Zitat Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502PubMedCrossRef Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502PubMedCrossRef
Zurück zum Zitat Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRef Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRef
Zurück zum Zitat Horikawa Y, Shimizu M, Saito T, Isogai A, Imai T, Sugiyama J (2018) Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. Int J Biol Macromol 109:569–575PubMedCrossRef Horikawa Y, Shimizu M, Saito T, Isogai A, Imai T, Sugiyama J (2018) Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. Int J Biol Macromol 109:569–575PubMedCrossRef
Zurück zum Zitat Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C-MAS-NMR study of conformations of oligosaccharides and cellulose—conformation of CH2OH group about the exo-cyclic C–C bond. Polym Bull 10:357–361CrossRef Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C-MAS-NMR study of conformations of oligosaccharides and cellulose—conformation of CH2OH group about the exo-cyclic C–C bond. Polym Bull 10:357–361CrossRef
Zurück zum Zitat Howsmon JA, Marchessault RH (1959) The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci I:313–322CrossRef Howsmon JA, Marchessault RH (1959) The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci I:313–322CrossRef
Zurück zum Zitat Hult E-L, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-MAS-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55CrossRef Hult E-L, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-MAS-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55CrossRef
Zurück zum Zitat Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314CrossRef Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314CrossRef
Zurück zum Zitat Jiang F, Hsich Y-L (2017) Rice straw nanocelluloses: process-linked structures, properties, and self-assembling into ultra-fine fibers. In: Agarwal UP, Atalla RH, Isogai A (eds) Nanocelluloses: their preparation, properties, and applications, ACS Symp. Series, American Chemical Society, pp 133–150 Jiang F, Hsich Y-L (2017) Rice straw nanocelluloses: process-linked structures, properties, and self-assembling into ultra-fine fibers. In: Agarwal UP, Atalla RH, Isogai A (eds) Nanocelluloses: their preparation, properties, and applications, ACS Symp. Series, American Chemical Society, pp 133–150
Zurück zum Zitat Jorfi M, Roberts MN, Foster EJ, Weder C (2013) Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. ACS Appl Mater Interfaces 5:1517–1526PubMedCrossRef Jorfi M, Roberts MN, Foster EJ, Weder C (2013) Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. ACS Appl Mater Interfaces 5:1517–1526PubMedCrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Kose O, Tran A, Lewis L, Hamad WY, MacLachlan MJ (2019) Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat Commun 10:510PubMedPubMedCentralCrossRef Kose O, Tran A, Lewis L, Hamad WY, MacLachlan MJ (2019) Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat Commun 10:510PubMedPubMedCentralCrossRef
Zurück zum Zitat Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165PubMedCrossRef Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165PubMedCrossRef
Zurück zum Zitat Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C MAS-NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25CrossRef Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C MAS-NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25CrossRef
Zurück zum Zitat Lemke CH, Dong RY, Michal CA, Hamad WY (2012) New insights into nano-crystalline cellulose structure and morphology based on solid-state MAS-NMR. Cellulose 19:1619–1629CrossRef Lemke CH, Dong RY, Michal CA, Hamad WY (2012) New insights into nano-crystalline cellulose structure and morphology based on solid-state MAS-NMR. Cellulose 19:1619–1629CrossRef
Zurück zum Zitat Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393PubMedCrossRef Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393PubMedCrossRef
Zurück zum Zitat Lindner B, Petridis L, Langan P, Smith JC (2014) Determination of cellulose crystallinity from powder diffraction diagrams. Biopolymers 103:67–73CrossRef Lindner B, Petridis L, Langan P, Smith JC (2014) Determination of cellulose crystallinity from powder diffraction diagrams. Biopolymers 103:67–73CrossRef
Zurück zum Zitat Ling Z, Wang T, Makarem M, Santiago Cintro´n M et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef Ling Z, Wang T, Makarem M, Santiago Cintro´n M et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef
Zurück zum Zitat Lu Y, Weng L, Cao X (2006) Morphological thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRef Lu Y, Weng L, Cao X (2006) Morphological thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRef
Zurück zum Zitat Mao J, Abushammala H, Brown N, Laborie MP (2017) Comparative Assessment of Methods for Producing Cellulose I Nanocrystals from Cellulosic Sources. In: Agarwal UP, Atalla RH, Isogai A (eds) Nanocelluloses: their preparation, properties, and applications, ACS symp. Series, American Chemical Society, pp 19–53 Mao J, Abushammala H, Brown N, Laborie MP (2017) Comparative Assessment of Methods for Producing Cellulose I Nanocrystals from Cellulosic Sources. In: Agarwal UP, Atalla RH, Isogai A (eds) Nanocelluloses: their preparation, properties, and applications, ACS symp. Series, American Chemical Society, pp 19–53
Zurück zum Zitat Mokhena TC, John MJ (2020) Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27:1149–1194CrossRef Mokhena TC, John MJ (2020) Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27:1149–1194CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMedCrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMedCrossRef
Zurück zum Zitat Nanko H, Button A, Hillman D (2005) The World of Market Pulp, WOMP LLC, Appleton WI Nanko H, Button A, Hillman D (2005) The World of Market Pulp, WOMP LLC, Appleton WI
Zurück zum Zitat Natterodt JC, Sapkota J, Foster JE, Weder C (2017) Polymer nanocomposites with cellulose nanocrystals featuring adaptive surface groups. Biomacromolecules 18:517–525PubMedCrossRef Natterodt JC, Sapkota J, Foster JE, Weder C (2017) Polymer nanocomposites with cellulose nanocrystals featuring adaptive surface groups. Biomacromolecules 18:517–525PubMedCrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082PubMedCrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082PubMedCrossRef
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10PubMedPubMedCentralCrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10PubMedPubMedCentralCrossRef
Zurück zum Zitat Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820CrossRef Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820CrossRef
Zurück zum Zitat Reiner RS, Rudie AW (2013) production and applications of cellulose material. In: Postek MT, Moon RJ, Rudie AJ, Bilodeau MA (eds), TAPPI Press, Atlanta, pp 21–24 Reiner RS, Rudie AW (2013) production and applications of cellulose material. In: Postek MT, Moon RJ, Rudie AJ, Bilodeau MA (eds), TAPPI Press, Atlanta, pp 21–24
Zurück zum Zitat Sabo RC, Yermakov A, Law CT, Elhajjar R (2016) Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: A review. J Renew Mater 4:297–312CrossRef Sabo RC, Yermakov A, Law CT, Elhajjar R (2016) Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: A review. J Renew Mater 4:297–312CrossRef
Zurück zum Zitat Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138PubMedCrossRef Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138PubMedCrossRef
Zurück zum Zitat Smyth M, Rader C, Bras J, Foster EJ (2018) Characterization and mechanical properties of ultraviolet stimuli-responsive functionalized cellulose nanocrystal alginate composites. J Appl Polym Sci 135:45857CrossRef Smyth M, Rader C, Bras J, Foster EJ (2018) Characterization and mechanical properties of ultraviolet stimuli-responsive functionalized cellulose nanocrystal alginate composites. J Appl Polym Sci 135:45857CrossRef
Zurück zum Zitat Vanderfleet OM, Reid MS, Bras J, Heux L, Godoy-Vargas J, Panga MKR, Cranston ED (2019) Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26:507–528CrossRef Vanderfleet OM, Reid MS, Bras J, Heux L, Godoy-Vargas J, Panga MKR, Cranston ED (2019) Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26:507–528CrossRef
Zurück zum Zitat Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native. Cellulose 4:221–232CrossRef Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native. Cellulose 4:221–232CrossRef
Zurück zum Zitat Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRef Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRef
Zurück zum Zitat Wickholm K, Larsson PT, Iversen T (1998) Assignment of noncrystalline forms in cellulose I by CP/MAS 13C MAS-NMR spectroscopy. Carbohydr Res 312:123–129CrossRef Wickholm K, Larsson PT, Iversen T (1998) Assignment of noncrystalline forms in cellulose I by CP/MAS 13C MAS-NMR spectroscopy. Carbohydr Res 312:123–129CrossRef
Zurück zum Zitat Wormald P, Wickholm K, Larsson PT, Iversen T (1996) Conversions between ordered and disordered cellulose: Effects of mechanical treatment followed by cyclic wetting and drying. Cellulose 3:141–152CrossRef Wormald P, Wickholm K, Larsson PT, Iversen T (1996) Conversions between ordered and disordered cellulose: Effects of mechanical treatment followed by cyclic wetting and drying. Cellulose 3:141–152CrossRef
Zurück zum Zitat Yang J, Han C, Duan J, Xu F, Sun R (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207PubMedCrossRef Yang J, Han C, Duan J, Xu F, Sun R (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207PubMedCrossRef
Zurück zum Zitat Yang H, Wang T, Oehme D, Petridis L, Hong M, Kubicki JD (2018) Structural factors affecting 13C MAS-NMR chemical shifts of cellulose: a computational study. Cellulose 25:23–36CrossRef Yang H, Wang T, Oehme D, Petridis L, Hong M, Kubicki JD (2018) Structural factors affecting 13C MAS-NMR chemical shifts of cellulose: a computational study. Cellulose 25:23–36CrossRef
Zurück zum Zitat Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579CrossRef Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579CrossRef
Zurück zum Zitat Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944CrossRef Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944CrossRef
Zurück zum Zitat Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophotonics 6:063516CrossRef Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophotonics 6:063516CrossRef
Metadaten
Titel
Characterization of the supramolecular structures of cellulose nanocrystals of different origins
verfasst von
Umesh P. Agarwal
Richard S. Reiner
Sally A. Ralph
Jeffery Catchmark
Kai Chi
E. Johan Foster
Christopher G. Hunt
Carlos Baez
Rebecca E. Ibach
Kolby C. Hirth
Publikationsdatum
06.01.2021
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2021
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03590-z

Weitere Artikel der Ausgabe 3/2021

Cellulose 3/2021 Zur Ausgabe