Skip to main content
Erschienen in: Cluster Computing 4/2021

24.05.2021

Spectrum access in cognitive IoT using reinforcement learning

verfasst von: Walid K. Ghamry, Suzan Shukry

Erschienen in: Cluster Computing | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the advent of fifth generation technologies for wireless networks and the expansion of the use of the Internet of things, the demands in using spectrum transmission have increased significantly, resulting in a shortage of available spectrum resources to meet these needs. The optimal utilization of the spectrum resources plays an important role to overcome this shortage problem. The Cognitive \(IoT\) (\(CIoT\)) is considered as promising technology to enhance spectrum utilization by accessing the vacant 4G/5G spectrum licensed to a primary user (\(PU\)). The choice between single channel and multiple channels spectrum access is critical in achieving higher data transmission and throughput. In single channel access, the \(CIoT\) waits on the same channel until its availability for usage, while in multiple channels access, \(CIoT\) can switch channels whenever it faces occupied channel, which improves the transmission quality and the achieved throughput. In this paper, a proposed proactive multiple channels spectrum access approach is introduced to enhance the spectrum access of \(CIoT\) through multiple available interfaces, wherein \(CIoT\) utilizes past channel states to predict the forthcoming spectrum availability. The proactive approach uses Reinforcement Learning \((RL)\) algorithm to select the available channels and Bayesian algorithm to predict how long the channel will be unoccupied. The available channels are arranged in descending order of their estimated idle probabilities to enable \(CIoT\) find sufficient idle channels quickly. The \(CIoT\) can use multiple channels simultaneously as long as there are enough free channels for transmission to reduce the spectrum handoffs and the transmission interruptions due to collisions. The sensing accuracy is adapted by achieving a high targeted probability of detection to guarantee primary users protection against harmful interference and lower probability of false alarm to increase the spectrum utilization. The simulation results demonstrate the effectiveness of the proposed approach and show an interesting performance compared with the single channel access model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mainetti, L., Patrono, L., Vilei, A.: Evolution of wireless sensor networks towards the Internet of Things: a survey. In: Proceedings of the IEEE International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, Sept 2011, pp. 15–17 Mainetti, L., Patrono, L., Vilei, A.: Evolution of wireless sensor networks towards the Internet of Things: a survey. In: Proceedings of the IEEE International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, Sept 2011, pp. 15–17
2.
Zurück zum Zitat Khalil, N., Abid, M.R., Benhaddou, D., Gerndt, M.: Wireless sensors networks for Internet of Things. In: Proceedings of the IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, pp. 1–6. (2014) Khalil, N., Abid, M.R., Benhaddou, D., Gerndt, M.: Wireless sensors networks for Internet of Things. In: Proceedings of the IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, pp. 1–6. (2014)
3.
Zurück zum Zitat Lin, Y., Yang, J., Lv, Z., Wei, W., Song, H.: A self-assessment stereo capture model applicable to the Internet of Things. Sensors 15(8), 20925–20944 (2015)CrossRef Lin, Y., Yang, J., Lv, Z., Wei, W., Song, H.: A self-assessment stereo capture model applicable to the Internet of Things. Sensors 15(8), 20925–20944 (2015)CrossRef
4.
Zurück zum Zitat Yang, J., He, S., Lin, Y., Lv, Z.: Multimedia cloud transmission and storage system based on Internet of Things. Multimedia Tools Appl. 76(17), 17735–17750 (2015)CrossRef Yang, J., He, S., Lin, Y., Lv, Z.: Multimedia cloud transmission and storage system based on Internet of Things. Multimedia Tools Appl. 76(17), 17735–17750 (2015)CrossRef
5.
Zurück zum Zitat Maw, H.A., Xiao, H., Christianson, B., Malcolm, J.A.: BTG-AC: break-the-glass access control model for medical data in wireless sensor networks. IEEE J. Biomed. Health Inf. 20(3), 763–774 (2016)CrossRef Maw, H.A., Xiao, H., Christianson, B., Malcolm, J.A.: BTG-AC: break-the-glass access control model for medical data in wireless sensor networks. IEEE J. Biomed. Health Inf. 20(3), 763–774 (2016)CrossRef
6.
Zurück zum Zitat Yuan, B., Fu, C., Chen, D.: Building a large scale wireless sensor network for the industrial environment. In: Proceedings of the IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Daegu, South Korea, Aug 2016 Yuan, B., Fu, C., Chen, D.: Building a large scale wireless sensor network for the industrial environment. In: Proceedings of the IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Daegu, South Korea, Aug 2016
7.
Zurück zum Zitat Chen, M., Yang, J., Hao, Y., Mao, S., Hwang, K.: A 5G cognitive system for healthcare. Big Data Cogn. Comput. 1(1), 2–16 (2017)CrossRef Chen, M., Yang, J., Hao, Y., Mao, S., Hwang, K.: A 5G cognitive system for healthcare. Big Data Cogn. Comput. 1(1), 2–16 (2017)CrossRef
8.
Zurück zum Zitat Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5, 8869–8879 (2017)CrossRef Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5, 8869–8879 (2017)CrossRef
9.
Zurück zum Zitat Tervonen, J., Mikhaylov, K., Pieskä, S., Jämsä, J., Heikkilä, M.: Cognitive Internet-of-Things solutions enabled by wireless sensor and actuator networks. In: Proceedings of the IEEE Conference on Cognitive Infocommunications (CogInfoCom), Italy, pp. 97–102. (2014) Tervonen, J., Mikhaylov, K., Pieskä, S., Jämsä, J., Heikkilä, M.: Cognitive Internet-of-Things solutions enabled by wireless sensor and actuator networks. In: Proceedings of the IEEE Conference on Cognitive Infocommunications (CogInfoCom), Italy, pp. 97–102. (2014)
10.
Zurück zum Zitat Wu, Q., Ding, G., Xu, Y., Feng, S., Du, Z., Wang, J., Long, K.: Cognitive Internet of Things: a new paradigm beyond connection. IEEE Internet Things J. 1(2), 129–143 (2014)CrossRef Wu, Q., Ding, G., Xu, Y., Feng, S., Du, Z., Wang, J., Long, K.: Cognitive Internet of Things: a new paradigm beyond connection. IEEE Internet Things J. 1(2), 129–143 (2014)CrossRef
11.
Zurück zum Zitat Shah, M.A., Zhang, S., Maple, C.: Cognitive radio networks for Internet of Things: applications, challenges and future. In: Proceedings of the International Conference on Automation and Computing, London, pp. 1–6. (2013) Shah, M.A., Zhang, S., Maple, C.: Cognitive radio networks for Internet of Things: applications, challenges and future. In: Proceedings of the International Conference on Automation and Computing, London, pp. 1–6. (2013)
12.
Zurück zum Zitat Haustein, T., Stanczak, S., Wolisz, A., Jondral, F., Schotten, H., Kraemer, R., Mück, M., Mennenga, H., Bender, P.: Cognitive wireless communications—a paradigm shift in dealing with radio resources as a prerequisite for the wireless network of the future—an overview on the topic of cognitive wireless technologies. Frequenz 70(7–8), 281–288 (2016) Haustein, T., Stanczak, S., Wolisz, A., Jondral, F., Schotten, H., Kraemer, R., Mück, M., Mennenga, H., Bender, P.: Cognitive wireless communications—a paradigm shift in dealing with radio resources as a prerequisite for the wireless network of the future—an overview on the topic of cognitive wireless technologies. Frequenz 70(7–8), 281–288 (2016)
13.
Zurück zum Zitat Otermat, D.T., Kostanic, I., Otero, C.E.: Analysis of the FM radio spectrum for secondary licensing of low-power short-range cognitive Internet of Things devices. IEEE Access 4, 6681–6691 (2016)CrossRef Otermat, D.T., Kostanic, I., Otero, C.E.: Analysis of the FM radio spectrum for secondary licensing of low-power short-range cognitive Internet of Things devices. IEEE Access 4, 6681–6691 (2016)CrossRef
14.
Zurück zum Zitat Somov, A., Dupont, C., Giaffreda, R.: Supporting smart-city mobility with cognitive Internet of Things. In: Proceedings of the Future Network & Mobile Summit, Lisbon, Portugal, Oct 2013, pp. 1–10 Somov, A., Dupont, C., Giaffreda, R.: Supporting smart-city mobility with cognitive Internet of Things. In: Proceedings of the Future Network & Mobile Summit, Lisbon, Portugal, Oct 2013, pp. 1–10
15.
Zurück zum Zitat Nitti, M., Murroni, M., Fadda, M., Atzori, L.: Exploiting social Internet of Things features in cognitive radio. IEEE Access 34, 9204–9212 (2016)CrossRef Nitti, M., Murroni, M., Fadda, M., Atzori, L.: Exploiting social Internet of Things features in cognitive radio. IEEE Access 34, 9204–9212 (2016)CrossRef
16.
Zurück zum Zitat Zhu, J., Song, Y., Jiang, D., Song, H.: Multi-armed bandit channel access scheme with cognitive radio technology in wireless sensor networks for the Internet of Things. IEEE Access 4, 4609–4617 (2016)CrossRef Zhu, J., Song, Y., Jiang, D., Song, H.: Multi-armed bandit channel access scheme with cognitive radio technology in wireless sensor networks for the Internet of Things. IEEE Access 4, 4609–4617 (2016)CrossRef
17.
Zurück zum Zitat Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)CrossRef Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)CrossRef
18.
Zurück zum Zitat Tsiropoulos, G.I., Dobre, O.A., Hossam Ahmed, M., Baddour, K.E.: Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Commun. Surv. Tutor. 18(1), 824–847 (2016)CrossRef Tsiropoulos, G.I., Dobre, O.A., Hossam Ahmed, M., Baddour, K.E.: Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Commun. Surv. Tutor. 18(1), 824–847 (2016)CrossRef
19.
Zurück zum Zitat Liu, X., Jia, M., Zhang, X., Lu, W.: A novel multichannel internet of things based on dynamic spectrum sharing in 5g communication. IEEE Internet Things J. 6(4), 5962–5970 (2019)CrossRef Liu, X., Jia, M., Zhang, X., Lu, W.: A novel multichannel internet of things based on dynamic spectrum sharing in 5g communication. IEEE Internet Things J. 6(4), 5962–5970 (2019)CrossRef
22.
Zurück zum Zitat Gosavi, A.: Reinforcement learning: a tutorial survey and recent advances. INFORMS J. Comput. 21(2), 178–192 (2009)MathSciNetCrossRef Gosavi, A.: Reinforcement learning: a tutorial survey and recent advances. INFORMS J. Comput. 21(2), 178–192 (2009)MathSciNetCrossRef
23.
Zurück zum Zitat Raj, V., Dias, I., Tholeti, T., Kalyani, S.: Spectrum access in cognitive radio using a two-stage reinforcement learning approach. IEEE J. Sel. Top. Signal Process. 12(1), 20–34 (2018)CrossRef Raj, V., Dias, I., Tholeti, T., Kalyani, S.: Spectrum access in cognitive radio using a two-stage reinforcement learning approach. IEEE J. Sel. Top. Signal Process. 12(1), 20–34 (2018)CrossRef
24.
Zurück zum Zitat Yang, J., Zhao, H.: Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Commun. Lett. 19(10), 1738–1741 (2015)CrossRef Yang, J., Zhao, H.: Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Commun. Lett. 19(10), 1738–1741 (2015)CrossRef
25.
Zurück zum Zitat Lu, D., Huang, X., Zhang, W., Fan, J.: Interference-aware spectrum handover for cognitive radio networks. Wirel. Commun. Mob. Comput. 14(11), 1099–1112 (2014)CrossRef Lu, D., Huang, X., Zhang, W., Fan, J.: Interference-aware spectrum handover for cognitive radio networks. Wirel. Commun. Mob. Comput. 14(11), 1099–1112 (2014)CrossRef
26.
Zurück zum Zitat Oksanen, J., Koivunen, V.: An order optimal policy for exploiting idle spectrum in cognitive radio networks. IEEE Trans. Signal Process. 63(5), 1214–1227 (2015)MathSciNetCrossRef Oksanen, J., Koivunen, V.: An order optimal policy for exploiting idle spectrum in cognitive radio networks. IEEE Trans. Signal Process. 63(5), 1214–1227 (2015)MathSciNetCrossRef
27.
Zurück zum Zitat Lertsinsrubtavee, A., Malouch, N.: Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Trans. Mob. Comput. 15(11), 2781–2793 (2016)CrossRef Lertsinsrubtavee, A., Malouch, N.: Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Trans. Mob. Comput. 15(11), 2781–2793 (2016)CrossRef
28.
Zurück zum Zitat Shi, Q., Shao, W., Fang, B., Zhang, Y., Zhang, Y.: Reinforcement learning-based spectrum handoff scheme with measured PDR in cognitive radio networks. Electron. Lett. 55(25), 1368–1370 (2019)CrossRef Shi, Q., Shao, W., Fang, B., Zhang, Y., Zhang, Y.: Reinforcement learning-based spectrum handoff scheme with measured PDR in cognitive radio networks. Electron. Lett. 55(25), 1368–1370 (2019)CrossRef
29.
Zurück zum Zitat Syed, A., Yau, K., Mohamad, H., Ramli, N., Hashim, W.: Channel selection in multi-hop cognitive radio network using reinforcement learning: an experimental study. In: IET, International Conference on Frontiers of Communications, Networks and Applications (ICFCNA 2014 - Malaysia), Nov 2014 Syed, A., Yau, K., Mohamad, H., Ramli, N., Hashim, W.: Channel selection in multi-hop cognitive radio network using reinforcement learning: an experimental study. In: IET, International Conference on Frontiers of Communications, Networks and Applications (ICFCNA 2014 - Malaysia), Nov 2014
30.
Zurück zum Zitat Notsu, A., Honda, K., Ichihashi, H., Komori, Y.: Simple reinforcement learning for small-memory agent. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, vol. 1, IEEE, pp. 458–461, Dec 2011 Notsu, A., Honda, K., Ichihashi, H., Komori, Y.: Simple reinforcement learning for small-memory agent. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, vol. 1, IEEE, pp. 458–461, Dec 2011
31.
Zurück zum Zitat Hossen, M.A., Yoo, S.: Q-learning based multi-objective clustering algorithm for cognitive radio ad hoc networks. IEEE Access 7, 181959–181971 (2019)CrossRef Hossen, M.A., Yoo, S.: Q-learning based multi-objective clustering algorithm for cognitive radio ad hoc networks. IEEE Access 7, 181959–181971 (2019)CrossRef
32.
Zurück zum Zitat Lundn, J., Kulkarni, S.R., Koivunen, V., Poor, H.V.: Multiagent reinforcement learning based spectrum sensing policies for cognitive radio networks. IEEE J. Sel. Top. Signal Process. 7(5), 858–868 (2013)CrossRef Lundn, J., Kulkarni, S.R., Koivunen, V., Poor, H.V.: Multiagent reinforcement learning based spectrum sensing policies for cognitive radio networks. IEEE J. Sel. Top. Signal Process. 7(5), 858–868 (2013)CrossRef
33.
Zurück zum Zitat Wu, Y., Hu, F., Kumar, S., Zhu, Y., Talari, A., Rahnavard, N., Matyjas, J.D.: A learning-based QOE-driven spectrum handoff scheme for multimedia transmissions over cognitive radio networks. IEEE J. Sel. Areas Commun. 32(11), 2134–2148 (2014)CrossRef Wu, Y., Hu, F., Kumar, S., Zhu, Y., Talari, A., Rahnavard, N., Matyjas, J.D.: A learning-based QOE-driven spectrum handoff scheme for multimedia transmissions over cognitive radio networks. IEEE J. Sel. Areas Commun. 32(11), 2134–2148 (2014)CrossRef
34.
Zurück zum Zitat Li, F., Lam, K.-Y., Sheng, Z., Zhang, X., Zhao, K., Wang, L.: Q-learning-based dynamic spectrum access in cognitive industrial Internet of Things. Mob. Netw. Appl. 23, 1636–1644 (2018)CrossRef Li, F., Lam, K.-Y., Sheng, Z., Zhang, X., Zhao, K., Wang, L.: Q-learning-based dynamic spectrum access in cognitive industrial Internet of Things. Mob. Netw. Appl. 23, 1636–1644 (2018)CrossRef
35.
Zurück zum Zitat Zhu, J., Song, Y., Jiang, D., Song, H.: A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of Things. IEEE Internet Things J. 5(4), 2375–2385 (2018)CrossRef Zhu, J., Song, Y., Jiang, D., Song, H.: A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of Things. IEEE Internet Things J. 5(4), 2375–2385 (2018)CrossRef
36.
Zurück zum Zitat Yang, H., Zhong, W.-D., Chen, C., Alphones, A., Xie, X.: Deep-reinforcement-learning-based energy-efficient resource management for social and cognitive Internet of Things. IEEE Internet Things J. 7(6), 5677–5689 (2020)CrossRef Yang, H., Zhong, W.-D., Chen, C., Alphones, A., Xie, X.: Deep-reinforcement-learning-based energy-efficient resource management for social and cognitive Internet of Things. IEEE Internet Things J. 7(6), 5677–5689 (2020)CrossRef
37.
Zurück zum Zitat Xu, Y.-H., Tian, Y.-B., Searyoh, P.K., Yu, G., Yong, Y.-T.: Deep reinforcement learning-based resource allocation strategy for energy harvesting-powered cognitive machine-to-machine networks. Comput. Commun. 160, 706–717 (2020)CrossRef Xu, Y.-H., Tian, Y.-B., Searyoh, P.K., Yu, G., Yong, Y.-T.: Deep reinforcement learning-based resource allocation strategy for energy harvesting-powered cognitive machine-to-machine networks. Comput. Commun. 160, 706–717 (2020)CrossRef
39.
Zurück zum Zitat Ning, W., Huang, X., Yang, K., Wu, F., Leng, S.: Reinforcement learning enabled cooperative spectrum sensing in cognitive radio networks. J. Commun. Netw. 22(1), 12–22 (2020)CrossRef Ning, W., Huang, X., Yang, K., Wu, F., Leng, S.: Reinforcement learning enabled cooperative spectrum sensing in cognitive radio networks. J. Commun. Netw. 22(1), 12–22 (2020)CrossRef
40.
Zurück zum Zitat Sarikhani, R., Keynia, F.: Cooperative spectrum sensing meets machine learning: deep reinforcement learning approach. IEEE Commun. Lett. 24(7), 1459–1462 (2020)CrossRef Sarikhani, R., Keynia, F.: Cooperative spectrum sensing meets machine learning: deep reinforcement learning approach. IEEE Commun. Lett. 24(7), 1459–1462 (2020)CrossRef
41.
Zurück zum Zitat Li, D., Jiang, X., Cao, W., Xie, H., Liu, Y., Yang, J.: A POMDP approach to channel sensing and data transmission for opportunistic spectrum access. In: 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, pp. 164–169. (2019). https://doi.org/10.1109/IMCEC46724.2019.8984108 Li, D., Jiang, X., Cao, W., Xie, H., Liu, Y., Yang, J.: A POMDP approach to channel sensing and data transmission for opportunistic spectrum access. In: 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, pp. 164–169. (2019). https://​doi.​org/​10.​1109/​IMCEC46724.​2019.​8984108
42.
Zurück zum Zitat Das, A., Ghosh, S.C., Das, N., Barman, A.D.: Q-learning based co-operative spectrum mobility in cognitive radio networks. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, pp. 502–505. (2017). https://doi.org/10.1109/LCN.2017.80 Das, A., Ghosh, S.C., Das, N., Barman, A.D.: Q-learning based co-operative spectrum mobility in cognitive radio networks. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, pp. 502–505. (2017). https://​doi.​org/​10.​1109/​LCN.​2017.​80
43.
44.
Zurück zum Zitat Li, Y., Zhang, W., Wang, C., Sun, J., Liu, Y.: Deep reinforcement learning for dynamic spectrum sensing and aggregation in multi-channel wireless networks. IEEE Trans. Cogn. Commun. Netw. 6(2), 464–475 (2020)CrossRef Li, Y., Zhang, W., Wang, C., Sun, J., Liu, Y.: Deep reinforcement learning for dynamic spectrum sensing and aggregation in multi-channel wireless networks. IEEE Trans. Cogn. Commun. Netw. 6(2), 464–475 (2020)CrossRef
45.
Zurück zum Zitat Salameh, H.B., Shtyyat, S., Jararweh, Y.: Adaptive variable-size virtual clustering for control channel assignment in dynamic access networks: design and simulations. Simul. Model. Pract. Theory 106, 102197 (2021)CrossRef Salameh, H.B., Shtyyat, S., Jararweh, Y.: Adaptive variable-size virtual clustering for control channel assignment in dynamic access networks: design and simulations. Simul. Model. Pract. Theory 106, 102197 (2021)CrossRef
46.
Zurück zum Zitat Liu, X., Zhang, X., Ding, H., Peng, B.: Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network. Ad Hoc Netw. 94, 101968 (2019)CrossRef Liu, X., Zhang, X., Ding, H., Peng, B.: Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network. Ad Hoc Netw. 94, 101968 (2019)CrossRef
47.
Zurück zum Zitat Jang, S.-J., Han, C.-H., Lee, K.-E., Yoo, S.-J.: Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks. EURASIP J. Wirel. Commun. Netw. 2019, 131 (2019)CrossRef Jang, S.-J., Han, C.-H., Lee, K.-E., Yoo, S.-J.: Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks. EURASIP J. Wirel. Commun. Netw. 2019, 131 (2019)CrossRef
Metadaten
Titel
Spectrum access in cognitive IoT using reinforcement learning
verfasst von
Walid K. Ghamry
Suzan Shukry
Publikationsdatum
24.05.2021
Verlag
Springer US
Erschienen in
Cluster Computing / Ausgabe 4/2021
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-021-03306-3

Weitere Artikel der Ausgabe 4/2021

Cluster Computing 4/2021 Zur Ausgabe

Premium Partner