Skip to main content
Erschienen in: Designs, Codes and Cryptography 2-3/2015

01.12.2015

Zero-knowledge proofs of knowledge for group homomorphisms

verfasst von: Ueli Maurer

Erschienen in: Designs, Codes and Cryptography | Ausgabe 2-3/2015

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A simple zero-knowledge proof of knowledge protocol is presented of which many known protocols are instantiations. These include Schnorr’s protocol for proving knowledge of a discrete logarithm, the Fiat–Shamir and Guillou–Quisquater protocols for proving knowledge of a modular root, protocols for proving knowledge of representations (like Okamoto’s protocol), protocols for proving equality of secret values, a protocol for proving the correctness of a Diffie–Hellman key, protocols for proving the multiplicative relation of three commitments (as required in secure multi-party computation), and protocols used in credential systems. This unifies a substantial body of work and can also lead to instantiations of the protocol for new applications.
Fußnoten
1
A correct argument is more involved; one has to argue that there exists an efficient knowledge extractor (see Sect. 3).
 
2
Equivalently, one can consider a relation on \(\{0,1\}^*\).
 
3
K must be able to choose the randomness of \(\hat{P}\) and to reset \(\hat{P}\).
 
4
It is also often called special soundness [6, 7] when the challenge space is large.
 
5
The last point implies that every particular challenge sequence \(c_1,\ldots ,c_s\) has negligible probability of being selected by an honest verifier.
 
6
The indistinguishability could also be statistical or computational.
 
7
This is sometimes also called special honest-verifier zero-knowledge [6, 7].
 
8
This requires access to the strategy of \(\hat{V}\), or \(\hat{V}\) must be rewindable.
 
9
Note, however, that our treatment and claims do not depend on the one-way property. Should f not be one-way, then the protocols are perhaps less useful, but they still have the claimed properties.
 
10
When we define a group homomorphism in terms of a given group homomorphism (denoted \([\cdot ]\)), then we write \([\![\cdot ]\!]\) to avoid overloading the symbol \([\cdot ]\).
 
11
There can be at least two reasons for choosing a small challenge space. First, a larger space may not work, for example if e is small in the GQ protocol. Second, one may want the protocol to be zero-knowledge, which generally does not hold for large (per-round) challenge space.
 
12
The group operations in \(G_1\times \cdots \times G_n\) and \(H_1\times \cdots \times H_n\) are defined component-wise.
 
13
Note that if the homomorphisms are bijective, then this protocol not only proves knowledge of x, but actually that all embedded values are identical.
 
14
One commits to a value x by choosing a random r and sending \(h_1^x h_2^{\rho }\) as the commitment (see also Sect. 6.7). This commitment scheme is information-theoretically hiding (but only computationally binding).
 
Literatur
1.
Zurück zum Zitat Aggarwal D., Maurer U.: Breaking RSA generically is equivalent to factoring. In: Advances in Cryptology—EUROCRYPT 2009. Lecture Notes in Computer Science, vol. 5479, pp. 36–53. Springer, Berlin (2009). Aggarwal D., Maurer U.: Breaking RSA generically is equivalent to factoring. In: Advances in Cryptology—EUROCRYPT 2009. Lecture Notes in Computer Science, vol. 5479, pp. 36–53. Springer, Berlin (2009).
2.
Zurück zum Zitat Bangerter E.: Efficient zero knowledge proofs of knowledge for homomorphisms. Ph.D. Thesis, Ruhr University Bochum (2005). Bangerter E.: Efficient zero knowledge proofs of knowledge for homomorphisms. Ph.D. Thesis, Ruhr University Bochum (2005).
3.
Zurück zum Zitat Bangerter E., Camenisch J., Maurer U.: Efficient proofs of knowledge of discrete logarithms and representations in groups with hidden order. In: Public Key Cryptography—PKC 2005. Lecture Notes in Computer Science, vol. 3386, pp. 154–171. Springer, Berlin (2005). Bangerter E., Camenisch J., Maurer U.: Efficient proofs of knowledge of discrete logarithms and representations in groups with hidden order. In: Public Key Cryptography—PKC 2005. Lecture Notes in Computer Science, vol. 3386, pp. 154–171. Springer, Berlin (2005).
4.
Zurück zum Zitat Bangerter E., Camenisch J., Krenn S.: Efficiency limitations for \(\varSigma \)-protocols for group homomorphisms. In: Theory of Cryptography TCC. Lecture Notes in Computer Science, vol. 5978, pp. 553–571. Springer, Berlin (2010). Bangerter E., Camenisch J., Krenn S.: Efficiency limitations for \(\varSigma \)-protocols for group homomorphisms. In: Theory of Cryptography TCC. Lecture Notes in Computer Science, vol. 5978, pp. 553–571. Springer, Berlin (2010).
5.
Zurück zum Zitat Camenisch J., Kiayias A., Yung M.: On the portability of generalized Schnorr proofs. In: Advances in Cryptology—EUROCRYPT 2009. Lecture Notes in Computer Science, vol. 5479, pp. 425–442. Springer, Berlin (2009). Camenisch J., Kiayias A., Yung M.: On the portability of generalized Schnorr proofs. In: Advances in Cryptology—EUROCRYPT 2009. Lecture Notes in Computer Science, vol. 5479, pp. 425–442. Springer, Berlin (2009).
6.
Zurück zum Zitat Cramer R.: Modular design of secure, yet practical cryptographic protocols. Ph.D. Thesis, University of Amsterdam (1996). Cramer R.: Modular design of secure, yet practical cryptographic protocols. Ph.D. Thesis, University of Amsterdam (1996).
7.
Zurück zum Zitat Damgård I.: On \(\varSigma \)-Protocols. Course Notes. Århus University, Denmark (2002). Damgård I.: On \(\varSigma \)-Protocols. Course Notes. Århus University, Denmark (2002).
8.
Zurück zum Zitat Diffie W., Hellman M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976). Diffie W., Hellman M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976).
9.
Zurück zum Zitat Feige U., Fiat A., Shamir A.: Zero-knowledge proofs of identity. J. Cryptol. 1, 77–94 (1988). Feige U., Fiat A., Shamir A.: Zero-knowledge proofs of identity. J. Cryptol. 1, 77–94 (1988).
10.
Zurück zum Zitat Fiat A., Shamir A.: How to prove yourself: practical solution to identification and signature problems. In: Advances in Cryptology—CRYPTO ’86. Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer, Berlin (1987). Fiat A., Shamir A.: How to prove yourself: practical solution to identification and signature problems. In: Advances in Cryptology—CRYPTO ’86. Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer, Berlin (1987).
11.
Zurück zum Zitat Goldwasser S., Micali S., Rackoff C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989). Goldwasser S., Micali S., Rackoff C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989).
12.
Zurück zum Zitat Guillou L.C., Quisquater J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Advances in Cryptology—EUROCRYPT ’88. Lecture Notes in Computer Science, vol. 330, pp. 123–128. Springer, Berlin (1988). Guillou L.C., Quisquater J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Advances in Cryptology—EUROCRYPT ’88. Lecture Notes in Computer Science, vol. 330, pp. 123–128. Springer, Berlin (1988).
13.
Zurück zum Zitat Koyama K., Maurer U., Okamoto T., Vanstone S.A.: New public-key schemes based on elliptic curves over \(Z_n\). In: Advances in Cryptology—CRYPTO ’91. Lecture Notes in Computer Science, vol. 576, pp. 252–266. Springer, Berlin (1992). Koyama K., Maurer U., Okamoto T., Vanstone S.A.: New public-key schemes based on elliptic curves over \(Z_n\). In: Advances in Cryptology—CRYPTO ’91. Lecture Notes in Computer Science, vol. 576, pp. 252–266. Springer, Berlin (1992).
14.
Zurück zum Zitat Maurer U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.) Advances in Cryptology—AFRICACRYPT 2009. Lecture Notes in Computer Science, vol. 5580, pp. 272–286. Springer, Berlin (2009). Maurer U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.) Advances in Cryptology—AFRICACRYPT 2009. Lecture Notes in Computer Science, vol. 5580, pp. 272–286. Springer, Berlin (2009).
15.
Zurück zum Zitat Okamoto T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Advances in Cryptology—CRYPTO ’92. Lecture Notes in Computer Science, vol. 740, pp. 31–53. Springer, Berlin (1992). Okamoto T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Advances in Cryptology—CRYPTO ’92. Lecture Notes in Computer Science, vol. 740, pp. 31–53. Springer, Berlin (1992).
16.
Zurück zum Zitat Pedersen T.: Non-interactive and information-theoretical secure verifiable secret sharing. In: Advances in Cryptology—CRYPTO ’91. Lecture Notes in Computer Science, vol. 576, pp. 129–140. Springer, Berlin (1991). Pedersen T.: Non-interactive and information-theoretical secure verifiable secret sharing. In: Advances in Cryptology—CRYPTO ’91. Lecture Notes in Computer Science, vol. 576, pp. 129–140. Springer, Berlin (1991).
17.
Zurück zum Zitat Rivest R.L., Shamir A., Adleman L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). Rivest R.L., Shamir A., Adleman L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978).
18.
Zurück zum Zitat Schnorr C.P.: Efficient identification and signatures for smart cards. In: Advances in Cryptology—CRYPTO ’89. Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer, Berlin (1990). Schnorr C.P.: Efficient identification and signatures for smart cards. In: Advances in Cryptology—CRYPTO ’89. Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer, Berlin (1990).
Metadaten
Titel
Zero-knowledge proofs of knowledge for group homomorphisms
verfasst von
Ueli Maurer
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 2-3/2015
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-015-0103-5

Weitere Artikel der Ausgabe 2-3/2015

Designs, Codes and Cryptography 2-3/2015 Zur Ausgabe

Premium Partner