Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2013

01.12.2013

Generalized Weissinger’s L-method for prediction of curved wings operating above a free surface in subsonic flow

verfasst von: H. Liang, Z. Zong, L. Sun, L. Zou, L. Zhou, Y. J. Zhao, Z. R. Ren

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The classical Weissinger’s L-method is generalized to the lifting problem for steadily advancing curved wings subject to the wing-in-ground (WIG) effect above a large body of water in subsonic flow, and the free surface defines the boundary between the air and water. Unlike the traditional analysis of the lifting problem, the essential techniques focus on finding the three-dimensional free surface Green’s function generated by the isolated horseshoe vortex in the upper layer of the stratified fluid where the air is regarded as weakly compressible and the water is incompressible. The numerical calculation is implemented using Weissinger’s L-method. Finally, the effects of the curved geometry on WIG effect in the vicinity of a free surface in subsonic flow are discussed. Extensive numerical examples are carried out to show the lift properties for three-dimensional swept and dihedral wings operating in the vicinity of a free surface as a function of the sweep or dihedral angle for different clearance-to-chord ratios and Mach numbers. Interestingly, for high Froude numbers, the free surface effectively becomes rigid, and it can safely be treated as a solid surface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Han C, Cho J (2005) Unsteady trailing vortex evolution behind a wing in ground effect. J Aircr AIAA 42:429–434CrossRef Han C, Cho J (2005) Unsteady trailing vortex evolution behind a wing in ground effect. J Aircr AIAA 42:429–434CrossRef
2.
Zurück zum Zitat Raymond AE (1921) Ground influence on airfoils. NACA Technical Note 67 Raymond AE (1921) Ground influence on airfoils. NACA Technical Note 67
3.
Zurück zum Zitat Pozrikidis C (2009) Fluid dynamics: theory, computation, and numerical simulation, 2nd edn. Springer, New YorkCrossRef Pozrikidis C (2009) Fluid dynamics: theory, computation, and numerical simulation, 2nd edn. Springer, New YorkCrossRef
4.
Zurück zum Zitat Ahmed MR, Sharma SD (2005) An investigation on the aerodynamics of a symmetrical airfoil in ground effect. Exp Therm Fluid Sci 29:633–647CrossRef Ahmed MR, Sharma SD (2005) An investigation on the aerodynamics of a symmetrical airfoil in ground effect. Exp Therm Fluid Sci 29:633–647CrossRef
5.
Zurück zum Zitat Zhang X, Zerihan J (2003) Off-surface aerodynamic measurements of a wing in ground effect. J Aircr AIAA 40:716–725CrossRef Zhang X, Zerihan J (2003) Off-surface aerodynamic measurements of a wing in ground effect. J Aircr AIAA 40:716–725CrossRef
6.
Zurück zum Zitat Ahmed MR, Takasaki T, Kohama Y (2007) Aerodynamics of a NACA 4412 airfoil in ground effect. AIAA J 45:37–47ADSCrossRef Ahmed MR, Takasaki T, Kohama Y (2007) Aerodynamics of a NACA 4412 airfoil in ground effect. AIAA J 45:37–47ADSCrossRef
7.
Zurück zum Zitat Iosilevskii G (2008) Asymptotic theory of an oscillating wing section in weak ground effect. Eur J Mech B–Fluid 27:477–490 Iosilevskii G (2008) Asymptotic theory of an oscillating wing section in weak ground effect. Eur J Mech B–Fluid 27:477–490
8.
Zurück zum Zitat Widnall SE, Barrows TM (1970) An analytic solution for two- and three-dimensional wing in ground effect. J Fluid Mech 41:769–792ADSCrossRefMATH Widnall SE, Barrows TM (1970) An analytic solution for two- and three-dimensional wing in ground effect. J Fluid Mech 41:769–792ADSCrossRefMATH
9.
Zurück zum Zitat Han C, Kim H, Cho J (2006) Steady aerodynamic characteristics of a wing flying over a nonplanar ground surface Part I: rail. J Mar Sci Tech 20:1043–1050 Han C, Kim H, Cho J (2006) Steady aerodynamic characteristics of a wing flying over a nonplanar ground surface Part I: rail. J Mar Sci Tech 20:1043–1050
10.
Zurück zum Zitat Han C, Kim H, Cho J (2006) Steady aerodynamic characteristics of a wing flying over a nonplanar ground surface Part II: channel. J Mar Sci Tech 20:1051–1058 Han C, Kim H, Cho J (2006) Steady aerodynamic characteristics of a wing flying over a nonplanar ground surface Part II: channel. J Mar Sci Tech 20:1051–1058
11.
Zurück zum Zitat Dragos L (1990) Subsonic flow past thick wing in ground effect, lifting line theory. Acta Mech 82:49–60CrossRefMATH Dragos L (1990) Subsonic flow past thick wing in ground effect, lifting line theory. Acta Mech 82:49–60CrossRefMATH
12.
Zurück zum Zitat Park K, Lee J (2008) Influence of endplate on aerodynamic characteristics of low-aspect-ratio wing in ground effect. J Mech Sci Tech 22:2578–2589CrossRef Park K, Lee J (2008) Influence of endplate on aerodynamic characteristics of low-aspect-ratio wing in ground effect. J Mech Sci Tech 22:2578–2589CrossRef
13.
Zurück zum Zitat Moryossef Y, Levy Y (2004) Effect of oscillations on airfoils in close proximity to ground. AIAA J 42:1755–1754ADSCrossRef Moryossef Y, Levy Y (2004) Effect of oscillations on airfoils in close proximity to ground. AIAA J 42:1755–1754ADSCrossRef
14.
15.
Zurück zum Zitat Suzuki K, Ikehata M (1994) Free surface effect of wig advancing over the still water surface. Proceedings of the International Conference on Hydrodynamics (ICHD’94), pp 254–260 Suzuki K, Ikehata M (1994) Free surface effect of wig advancing over the still water surface. Proceedings of the International Conference on Hydrodynamics (ICHD’94), pp 254–260
16.
Zurück zum Zitat Barber TJ (2007) A study of water surface deformation due to tip vortices of a WIG. J Ship Res 51:182–186 Barber TJ (2007) A study of water surface deformation due to tip vortices of a WIG. J Ship Res 51:182–186
17.
Zurück zum Zitat Zong Z, Liang H, Zhou L (2012) Lifting line theory for wing-in-ground effect in proximity to a free surface. J Eng Math 74:143–158MathSciNetCrossRefMATH Zong Z, Liang H, Zhou L (2012) Lifting line theory for wing-in-ground effect in proximity to a free surface. J Eng Math 74:143–158MathSciNetCrossRefMATH
18.
Zurück zum Zitat Liang H, Zhou L, Zong Z, Sun L (2013) An analytical investigation of two-dimensional and three-dimensional biplanes operating in the vicinity of a free surface. To appear in J Mar Sci Tech. doi:0.1007/s00773-012-0187-9 Liang H, Zhou L, Zong Z, Sun L (2013) An analytical investigation of two-dimensional and three-dimensional biplanes operating in the vicinity of a free surface. To appear in J Mar Sci Tech. doi:0.​1007/​s00773-012-0187-9
19.
Zurück zum Zitat Katz J, Plotkin A (1991) Low-speed aerodynamics: from wing theory to panel method. McGraw-Hill, Singapore Katz J, Plotkin A (1991) Low-speed aerodynamics: from wing theory to panel method. McGraw-Hill, Singapore
20.
Zurück zum Zitat Sachs G, Holzapfel F (2007) Flight mechanic and aerodynamic aspects of extremely large dihedral in birds. AIAA J 46:1–12 Sachs G, Holzapfel F (2007) Flight mechanic and aerodynamic aspects of extremely large dihedral in birds. AIAA J 46:1–12
21.
Zurück zum Zitat Phillips WF, Hansen AB, Nelson WM (2006) Effects of tail dihedral on static stability. J Aircr AIAA 43:1829–1837CrossRef Phillips WF, Hansen AB, Nelson WM (2006) Effects of tail dihedral on static stability. J Aircr AIAA 43:1829–1837CrossRef
22.
Zurück zum Zitat Kalman TP, Rodden WP, Giesing J (1971) Application of the doublet-lattice method to nonplanar configurations in subsonic flow. J Aircr AIAA 8:406–413CrossRef Kalman TP, Rodden WP, Giesing J (1971) Application of the doublet-lattice method to nonplanar configurations in subsonic flow. J Aircr AIAA 8:406–413CrossRef
23.
Zurück zum Zitat Gulcat U (2010) Fundamentals of modern unsteady aerodynamics. Springer, Berlin Gulcat U (2010) Fundamentals of modern unsteady aerodynamics. Springer, Berlin
24.
Zurück zum Zitat Milne-Thomson LM (1973) Theoretical aerodynamics. Dover, New York Milne-Thomson LM (1973) Theoretical aerodynamics. Dover, New York
25.
Zurück zum Zitat Newman JN (1977) Marine hydrodynamics. MIT, Cambridge Newman JN (1977) Marine hydrodynamics. MIT, Cambridge
26.
Zurück zum Zitat Scullen DC, Tuck EO (2011) Free-surface elevation due to moving pressure distributions in three dimensions. J Eng Math 70:29–42MathSciNetCrossRefMATH Scullen DC, Tuck EO (2011) Free-surface elevation due to moving pressure distributions in three dimensions. J Eng Math 70:29–42MathSciNetCrossRefMATH
27.
28.
Zurück zum Zitat Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New YorkMATH Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New YorkMATH
29.
Zurück zum Zitat Noblesse F (1981) Alternative integral representations for the Green function of the theory of ship wave resistance. J Eng Math 15:241–265CrossRefMATH Noblesse F (1981) Alternative integral representations for the Green function of the theory of ship wave resistance. J Eng Math 15:241–265CrossRefMATH
30.
Zurück zum Zitat Smith AMO, Giesing JP, Hess JL (1963) Calculation of waves and wave resistance for bodies moving on or beneath the surface of the sea. Douglas Aircraft Co., Long Beach, Report No 31488a Smith AMO, Giesing JP, Hess JL (1963) Calculation of waves and wave resistance for bodies moving on or beneath the surface of the sea. Douglas Aircraft Co., Long Beach, Report No 31488a
31.
Zurück zum Zitat Faltinsen OM (2005) Hydrodynamics of high-speed marine vehicles. Cambridge University Press, Cambridge Faltinsen OM (2005) Hydrodynamics of high-speed marine vehicles. Cambridge University Press, Cambridge
32.
Zurück zum Zitat Tuck EO (1984) A simple one-dimensional theory for air-supported vehicles over water. J Ship Res 28:290–292 Tuck EO (1984) A simple one-dimensional theory for air-supported vehicles over water. J Ship Res 28:290–292
Metadaten
Titel
Generalized Weissinger’s L-method for prediction of curved wings operating above a free surface in subsonic flow
verfasst von
H. Liang
Z. Zong
L. Sun
L. Zou
L. Zhou
Y. J. Zhao
Z. R. Ren
Publikationsdatum
01.12.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2013
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-012-9611-8

Weitere Artikel der Ausgabe 1/2013

Journal of Engineering Mathematics 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.