Skip to main content
Erschienen in: Journal of Computational Electronics 1/2012

01.03.2012

First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

verfasst von: Branislav K. Nikolić, Kamal K. Saha, Troels Markussen, Kristian S. Thygesen

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We overview the nonequilibrium Green function combined with density functional theory (NEGF-DFT) approach to modeling of independent electronic and phononic quantum transport in nanoscale thermoelectrics with examples focused on a new class of devices where a single organic molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from the ZGNR electrodes, so that their overlap within the molecular region generates a peak in the electronic transmission around the Fermi energy of the device. Additionally, the spatial symmetry properties of the transverse propagating states in the semi-infinite ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon thermal conductance in a ZGNR|molecule|ZGNR inhomogeneous heterojunctions, yields the thermoelectric figure of merit ZT≃0.4 at room temperature with maximum ZT≃3 reached at very low temperatures T≃10 K (so that the latter feature could be exploited for thermoelectric cooling of, e.g., infrared sensors). The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how the often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We should mention here that the Lorenz ratio κ el/GT calculated for transport of noninteracting electrons through several single-molecule nanojunctions shows variations by tens of percent from the Wiedemann-Franz law as the chemical potential crosses a transmission resonance, and much larger deviation around the transmission nodes [18, 19].
 
2
For comparison between Boltzmann semiclassical and Landauer quantum transport approaches applied to thermoelectric transport coefficients of conventional translationally invariant systems see Ref. [55].
 
3
For example, in the case of either bulk graphene [64] or GNRs [65] one has to employ TB Hamiltonian with up to third-nearest-neighbor hopping in order to match the DFT-computed band structure.
 
4
For an example of the peak in T el(E) induced by the overlap of evanescent wavefunctions originating from two CNT electrodes sandwiching 18-annulene molecule see Supplemental Material of Ref. [93].
 
Literatur
1.
Zurück zum Zitat Vining, C.B.: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83 (2009) CrossRef Vining, C.B.: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83 (2009) CrossRef
2.
Zurück zum Zitat Tritt, T.M.: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011) CrossRef Tritt, T.M.: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011) CrossRef
3.
Zurück zum Zitat Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008) CrossRef Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008) CrossRef
4.
Zurück zum Zitat Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009) CrossRef Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009) CrossRef
5.
Zurück zum Zitat Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. USA 93, 7436 (1996) CrossRef Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. USA 93, 7436 (1996) CrossRef
6.
Zurück zum Zitat Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 54 (2008) CrossRef Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 54 (2008) CrossRef
7.
Zurück zum Zitat Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009) CrossRef Kim, R., Datta, S., Lundstrom, M.S.: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009) CrossRef
8.
Zurück zum Zitat Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008) CrossRef Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008) CrossRef
9.
Zurück zum Zitat Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008) CrossRef Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008) CrossRef
10.
Zurück zum Zitat Reddy, P., Jang, S.-Y., Segalman, R.A., Majumdar, A.: Thermoelectricity in molecular junctions. Science 315, 1568 (2007) CrossRef Reddy, P., Jang, S.-Y., Segalman, R.A., Majumdar, A.: Thermoelectricity in molecular junctions. Science 315, 1568 (2007) CrossRef
11.
Zurück zum Zitat Baheti, K., Malen, J.A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T.D., Majumdar, A., Segalman, R.A.: Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715 (2008) CrossRef Baheti, K., Malen, J.A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T.D., Majumdar, A., Segalman, R.A.: Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715 (2008) CrossRef
12.
Zurück zum Zitat Malen, J.A., Doak, P., Baheti, K., Tilley, T.D., Segalman, R.A., Majumdar, A.: Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164 (2009) CrossRef Malen, J.A., Doak, P., Baheti, K., Tilley, T.D., Segalman, R.A., Majumdar, A.: Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164 (2009) CrossRef
13.
Zurück zum Zitat Malen, J.A., Yee, S.K., Majumdar, A., Segalman, R.A.: Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions. Chem. Phys. Lett. 491, 109 (2010) CrossRef Malen, J.A., Yee, S.K., Majumdar, A., Segalman, R.A.: Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions. Chem. Phys. Lett. 491, 109 (2010) CrossRef
14.
Zurück zum Zitat Tan, A., Sadat, S., Reddy, P.: Measurement of thermopower and current-voltage characteristics of molecular junctions to quantify orbital alignment. Appl. Phys. Lett. 96, 013110 (2010) CrossRef Tan, A., Sadat, S., Reddy, P.: Measurement of thermopower and current-voltage characteristics of molecular junctions to quantify orbital alignment. Appl. Phys. Lett. 96, 013110 (2010) CrossRef
15.
Zurück zum Zitat Hoffmann, E.A., Nilsson, H.A., Matthews, J.E., Nakpathomkun, N., Persson, A.I., Samuelson, L., Linke, H.: Measuring temperature gradients over nanometer length scales. Nano Lett. 9, 779 (2009) CrossRef Hoffmann, E.A., Nilsson, H.A., Matthews, J.E., Nakpathomkun, N., Persson, A.I., Samuelson, L., Linke, H.: Measuring temperature gradients over nanometer length scales. Nano Lett. 9, 779 (2009) CrossRef
16.
Zurück zum Zitat Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235 (2009) CrossRef Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235 (2009) CrossRef
17.
Zurück zum Zitat Dubi, Y., Di Ventra, M.: Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011) CrossRef Dubi, Y., Di Ventra, M.: Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011) CrossRef
18.
Zurück zum Zitat Bergfield, J.P., Stafford, C.A.: Thermoelectric signatures of coherent transport in single-molecule heterojunctions. Nano Lett. 9, 3072 (2009) CrossRef Bergfield, J.P., Stafford, C.A.: Thermoelectric signatures of coherent transport in single-molecule heterojunctions. Nano Lett. 9, 3072 (2009) CrossRef
19.
Zurück zum Zitat Bergfield, J.P., Solis, M.A., Stafford, C.A.: Giant thermoelectric effect from transmission supernodes. ACS Nano 4, 5314 (2010) CrossRef Bergfield, J.P., Solis, M.A., Stafford, C.A.: Giant thermoelectric effect from transmission supernodes. ACS Nano 4, 5314 (2010) CrossRef
20.
Zurück zum Zitat Kubala, B., König, J., Pekola, J.: Violation of the Wiedemann-Franz law in a single-electron transistor. Phys. Rev. Lett. 100, 066801 (2008) CrossRef Kubala, B., König, J., Pekola, J.: Violation of the Wiedemann-Franz law in a single-electron transistor. Phys. Rev. Lett. 100, 066801 (2008) CrossRef
21.
Zurück zum Zitat Held, K., Arita, R., Anisimov, V., Kuroki, K.: The LDA+DMFT route to identify good thermoelectrics. In: Zlatic, V., Hewson, A.C. (eds.) Properties and Applications of Thermoelectric Materials. The NATO Science for Peace and Security Programme, pp. 141–157. Springer, Berlin (2009) CrossRef Held, K., Arita, R., Anisimov, V., Kuroki, K.: The LDA+DMFT route to identify good thermoelectrics. In: Zlatic, V., Hewson, A.C. (eds.) Properties and Applications of Thermoelectric Materials. The NATO Science for Peace and Security Programme, pp. 141–157. Springer, Berlin (2009) CrossRef
22.
Zurück zum Zitat Held, K.: Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56, 829 (2007) CrossRef Held, K.: Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56, 829 (2007) CrossRef
23.
Zurück zum Zitat Wissgott, P., Toschi, A., Usui, H., Kuroki, K., Held, K.: Enhancement of the Na x CoO2 thermopower due to electronic correlations. Phys. Rev. B 82, 201106 (2010) CrossRef Wissgott, P., Toschi, A., Usui, H., Kuroki, K., Held, K.: Enhancement of the Na x CoO2 thermopower due to electronic correlations. Phys. Rev. B 82, 201106 (2010) CrossRef
24.
Zurück zum Zitat Boese, D., Fazio, R.: Thermoelectric effects in Kondo-correlated quantum dots. Europhys. Lett. 56, 576 (2001) CrossRef Boese, D., Fazio, R.: Thermoelectric effects in Kondo-correlated quantum dots. Europhys. Lett. 56, 576 (2001) CrossRef
25.
Zurück zum Zitat Zhang, Y., Dresselhaus, M.S., Shi, Y., Ren, Z., Chen, G.: High thermoelectric figure-of-merit in Kondo insulator nanowires at low temperatures. Nano Lett. 11, 1166 (2011) CrossRef Zhang, Y., Dresselhaus, M.S., Shi, Y., Ren, Z., Chen, G.: High thermoelectric figure-of-merit in Kondo insulator nanowires at low temperatures. Nano Lett. 11, 1166 (2011) CrossRef
26.
Zurück zum Zitat Pauly, F., Viljas, J.K., Cuevas, J.C.: Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study. Phys. Rev. B 78, 035315 (2008) CrossRef Pauly, F., Viljas, J.K., Cuevas, J.C.: Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study. Phys. Rev. B 78, 035315 (2008) CrossRef
27.
Zurück zum Zitat Ke, S.-H., Yang, W., Curtarolo, S., Baranger, H.U.: Thermopower of molecular junctions: An ab initio study. Nano Lett. 9, 1011 (2009) CrossRef Ke, S.-H., Yang, W., Curtarolo, S., Baranger, H.U.: Thermopower of molecular junctions: An ab initio study. Nano Lett. 9, 1011 (2009) CrossRef
28.
Zurück zum Zitat Finch, C.M., García-Suárez, V.M., Lambert, C.J.: Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009) CrossRef Finch, C.M., García-Suárez, V.M., Lambert, C.J.: Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009) CrossRef
29.
Zurück zum Zitat Liu, Y.-S., Chen, Y.-C.: Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations. Phys. Rev. B 79, 193101 (2009) CrossRef Liu, Y.-S., Chen, Y.-C.: Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations. Phys. Rev. B 79, 193101 (2009) CrossRef
30.
Zurück zum Zitat Liu, Y.-S., Chen, Y.-R., Chen, Y.-C.: Thermoelectric efficiency in nanojunctions: A comparison between atomic junctions and molecular junctions. ACS Nano 3, 3497 (2009) CrossRef Liu, Y.-S., Chen, Y.-R., Chen, Y.-C.: Thermoelectric efficiency in nanojunctions: A comparison between atomic junctions and molecular junctions. ACS Nano 3, 3497 (2009) CrossRef
31.
Zurück zum Zitat Liu, Y.-S., Yao, H.-T., Chen, Y.-C.: Atomic-scale field-effect transistor as a thermoelectric power generator and self-powered device. J. Phys. Chem. C 115, 14988 (2011) CrossRef Liu, Y.-S., Yao, H.-T., Chen, Y.-C.: Atomic-scale field-effect transistor as a thermoelectric power generator and self-powered device. J. Phys. Chem. C 115, 14988 (2011) CrossRef
32.
Zurück zum Zitat Quek, S.Y., Choi, H.J., Louie, S.G., Neaton, J.B.: Thermopower of amine–gold-linked aromatic molecular junctions from first principles. ACS Nano 5, 551 (2011) CrossRef Quek, S.Y., Choi, H.J., Louie, S.G., Neaton, J.B.: Thermopower of amine–gold-linked aromatic molecular junctions from first principles. ACS Nano 5, 551 (2011) CrossRef
33.
Zurück zum Zitat Nozaki, D., Sevinçli, H., Li, W., Gutiérrez, R., Cuniberti, G.: Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes. Phys. Rev. B 81, 235406 (2010) CrossRef Nozaki, D., Sevinçli, H., Li, W., Gutiérrez, R., Cuniberti, G.: Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes. Phys. Rev. B 81, 235406 (2010) CrossRef
34.
Zurück zum Zitat Saha, K.K., Markussen, T., Thygesen, K.S., Nikolić, B.K.: Multiterminal single-molecule–graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage. Phys. Rev. B 84, 041412(R) (2011) Saha, K.K., Markussen, T., Thygesen, K.S., Nikolić, B.K.: Multiterminal single-molecule–graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage. Phys. Rev. B 84, 041412(R) (2011)
35.
Zurück zum Zitat Sergueev, N., Shin, S., Kaviany, M., Dunietz, B.: Efficiency of thermoelectric energy conversion in biphenyl-dithiol junctions: Effect of electron-phonon interactions. Phys. Rev. B 83, 195415 (2011) CrossRef Sergueev, N., Shin, S., Kaviany, M., Dunietz, B.: Efficiency of thermoelectric energy conversion in biphenyl-dithiol junctions: Effect of electron-phonon interactions. Phys. Rev. B 83, 195415 (2011) CrossRef
36.
Zurück zum Zitat Bergfield, J.P., Solomon, G.C., Stafford, C.A., Ratner, M.A.: Novel quantum interference effects in transport through molecular radicals. Nano Lett. 11, 2759 (2011) CrossRef Bergfield, J.P., Solomon, G.C., Stafford, C.A., Ratner, M.A.: Novel quantum interference effects in transport through molecular radicals. Nano Lett. 11, 2759 (2011) CrossRef
37.
Zurück zum Zitat Murphy, P., Mukerjee, S., Moore, J.: Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B 78, 161406 (2008) CrossRef Murphy, P., Mukerjee, S., Moore, J.: Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B 78, 161406 (2008) CrossRef
38.
Zurück zum Zitat Leijnse, M., Wegewijs, M.R., Flensberg, K.: Nonlinear thermoelectric properties of molecular junctions with vibrational coupling. Phys. Rev. B 82, 045412 (2010) CrossRef Leijnse, M., Wegewijs, M.R., Flensberg, K.: Nonlinear thermoelectric properties of molecular junctions with vibrational coupling. Phys. Rev. B 82, 045412 (2010) CrossRef
39.
Zurück zum Zitat Entin-Wohlman, O., Imry, Y., Aharony, A.: Three-terminal thermoelectric transport through a molecular junction. Phys. Rev. B 82, 115314 (2010) CrossRef Entin-Wohlman, O., Imry, Y., Aharony, A.: Three-terminal thermoelectric transport through a molecular junction. Phys. Rev. B 82, 115314 (2010) CrossRef
40.
Zurück zum Zitat Stadler, R., Markussen, T.: Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications. J. Chem. Phys. 135, 154109 (2011) CrossRef Stadler, R., Markussen, T.: Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications. J. Chem. Phys. 135, 154109 (2011) CrossRef
41.
Zurück zum Zitat Markussen, T., Jauho, A.-P., Brandbyge, M.: Surface-decorated silicon nanowires: A route to high-ZT thermoelectrics. Phys. Rev. Lett. 103, 055502 (2009) CrossRef Markussen, T., Jauho, A.-P., Brandbyge, M.: Surface-decorated silicon nanowires: A route to high-ZT thermoelectrics. Phys. Rev. Lett. 103, 055502 (2009) CrossRef
42.
Zurück zum Zitat Tsutsui, M., Taniguchi, M., Yokota, K., Kawai, T.: Roles of lattice cooling on local heating in metal-molecule-metal junctions. Appl. Phys. Lett. 96, 103110 (2010) CrossRef Tsutsui, M., Taniguchi, M., Yokota, K., Kawai, T.: Roles of lattice cooling on local heating in metal-molecule-metal junctions. Appl. Phys. Lett. 96, 103110 (2010) CrossRef
43.
Zurück zum Zitat Song, H., Reed, M.A., Lee, T.: Single molecule electronic devices. Adv. Mater. 23, 1583 (2011) CrossRef Song, H., Reed, M.A., Lee, T.: Single molecule electronic devices. Adv. Mater. 23, 1583 (2011) CrossRef
44.
Zurück zum Zitat Paulsson, M., Datta, S.: Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003) CrossRef Paulsson, M., Datta, S.: Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003) CrossRef
45.
Zurück zum Zitat Cardamone, D., Stafford, C., Mazumdar, S.: Controlling quantum transport through a single molecule. Nano Lett. 6, 2422 (2006) CrossRef Cardamone, D., Stafford, C., Mazumdar, S.: Controlling quantum transport through a single molecule. Nano Lett. 6, 2422 (2006) CrossRef
46.
Zurück zum Zitat Ke, S.-H., Yang, W., Baranger, H.U.: Quantum-interference-controlled molecular electronics. Nano Lett. 8, 3257 (2008) CrossRef Ke, S.-H., Yang, W., Baranger, H.U.: Quantum-interference-controlled molecular electronics. Nano Lett. 8, 3257 (2008) CrossRef
47.
Zurück zum Zitat Saha, K.K., Nikolić, B.K., Meunier, V., Lu, W., Bernholc, J.: Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. Phys. Rev. Lett. 105, 236803 (2010) CrossRef Saha, K.K., Nikolić, B.K., Meunier, V., Lu, W., Bernholc, J.: Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. Phys. Rev. Lett. 105, 236803 (2010) CrossRef
48.
Zurück zum Zitat Markussen, T., Stadler, R., Thygesen, K.S.: The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260 (2010) CrossRef Markussen, T., Stadler, R., Thygesen, K.S.: The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260 (2010) CrossRef
49.
Zurück zum Zitat Markussen, T., Stadler, R., Thygesen, K.S.: Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules. Phys. Chem. Chem. Phys. 13, 14311 (2011) CrossRef Markussen, T., Stadler, R., Thygesen, K.S.: Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules. Phys. Chem. Chem. Phys. 13, 14311 (2011) CrossRef
50.
Zurück zum Zitat Galperin, M., Nitzan, A., Ratner, M.A.: Inelastic effects in molecular junction transport: scattering and self-consistent calculations for the Seebeck coefficient. Mol. Phys. 106, 397 (2008) CrossRef Galperin, M., Nitzan, A., Ratner, M.A.: Inelastic effects in molecular junction transport: scattering and self-consistent calculations for the Seebeck coefficient. Mol. Phys. 106, 397 (2008) CrossRef
51.
Zurück zum Zitat Frederiksen, T., Paulsson, M., Brandbyge, M., Jauho, A.-P.: Inelastic transport theory from first principles: Methodology and application to nanoscale devices. Phys. Rev. B 75, 205413 (2007) CrossRef Frederiksen, T., Paulsson, M., Brandbyge, M., Jauho, A.-P.: Inelastic transport theory from first principles: Methodology and application to nanoscale devices. Phys. Rev. B 75, 205413 (2007) CrossRef
52.
Zurück zum Zitat Dash, L.K., Ness, H., Godby, R.W.: Nonequilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent born approximation. Phys. Rev. B 84, 085433 (2011) CrossRef Dash, L.K., Ness, H., Godby, R.W.: Nonequilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent born approximation. Phys. Rev. B 84, 085433 (2011) CrossRef
53.
Zurück zum Zitat Mingo, N.: Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006) CrossRef Mingo, N.: Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006) CrossRef
54.
Zurück zum Zitat Vo, T.T., Williamson, A.J., Lordi, V., Galli, G.: Atomistic design of thermoelectric properties of silicon nanowires. Nano Lett. 8, 1111 (2008) CrossRef Vo, T.T., Williamson, A.J., Lordi, V., Galli, G.: Atomistic design of thermoelectric properties of silicon nanowires. Nano Lett. 8, 1111 (2008) CrossRef
55.
Zurück zum Zitat Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M.: On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107, 023707 (2010) CrossRef Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M.: On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107, 023707 (2010) CrossRef
56.
Zurück zum Zitat Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002) MATH Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002) MATH
57.
Zurück zum Zitat Mitra, A., Aleiner, I., Millis, A.J.: Phonon effects in molecular transistors: Quantal and classical treatment. Phys. Rev. B 69, 245302 (2004) CrossRef Mitra, A., Aleiner, I., Millis, A.J.: Phonon effects in molecular transistors: Quantal and classical treatment. Phys. Rev. B 69, 245302 (2004) CrossRef
58.
Zurück zum Zitat Dubi, Y., Di Ventra, M.: Thermoelectric effects in nanoscale junctions. Nano Lett. 9, 97 (2008) CrossRef Dubi, Y., Di Ventra, M.: Thermoelectric effects in nanoscale junctions. Nano Lett. 9, 97 (2008) CrossRef
59.
Zurück zum Zitat Timm, C.: Tunneling through molecules and quantum dots: Master-equation approaches. Phys. Rev. B 77, 195416 (2008) CrossRef Timm, C.: Tunneling through molecules and quantum dots: Master-equation approaches. Phys. Rev. B 77, 195416 (2008) CrossRef
60.
Zurück zum Zitat Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (2007) Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (2007)
61.
Zurück zum Zitat Haupt, F., Novotný, T., Belzig, W.: Current noise in molecular junctions: Effects of the electron-phonon interaction. Phys. Rev. B 82, 165441 (2010) CrossRef Haupt, F., Novotný, T., Belzig, W.: Current noise in molecular junctions: Effects of the electron-phonon interaction. Phys. Rev. B 82, 165441 (2010) CrossRef
62.
Zurück zum Zitat Härtle, R., Benesch, C., Thoss, M.: Vibrational nonequilibrium effects in the conductance of single molecules with multiple electronic states. Phys. Rev. Lett. 102, 146801 (2009) CrossRef Härtle, R., Benesch, C., Thoss, M.: Vibrational nonequilibrium effects in the conductance of single molecules with multiple electronic states. Phys. Rev. Lett. 102, 146801 (2009) CrossRef
63.
Zurück zum Zitat Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995) Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)
64.
Zurück zum Zitat Reich, S., Maultzsch, J., Thomsen, C., Ordejón, P.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002) CrossRef Reich, S., Maultzsch, J., Thomsen, C., Ordejón, P.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002) CrossRef
65.
Zurück zum Zitat Cresti, A., Nemec, N., Biel, B., Niebler, G., Triozon, F., Cuniberti, G., Roche, S.: Charge transport in disordered graphene-based low dimensional materials. Nano Res. 1, 361 (2008) CrossRef Cresti, A., Nemec, N., Biel, B., Niebler, G., Triozon, F., Cuniberti, G., Roche, S.: Charge transport in disordered graphene-based low dimensional materials. Nano Res. 1, 361 (2008) CrossRef
66.
Zurück zum Zitat Markussen, T., Jauho, A.-P., Brandbyge, M.: Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties. Phys. Rev. B 79, 035415 (2009) CrossRef Markussen, T., Jauho, A.-P., Brandbyge, M.: Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties. Phys. Rev. B 79, 035415 (2009) CrossRef
67.
Zurück zum Zitat Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C.: Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 77, 165427 (2008) CrossRef Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C.: Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 77, 165427 (2008) CrossRef
68.
Zurück zum Zitat Areshkin, D.A., Nikolić, B.K.: Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms. Phys. Rev. B 81, 155450 (2010) CrossRef Areshkin, D.A., Nikolić, B.K.: Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms. Phys. Rev. B 81, 155450 (2010) CrossRef
69.
Zurück zum Zitat Toher, C., Filippetti, A., Sanvito, S., Burke, K.: Self-interaction errors in density-functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005) CrossRef Toher, C., Filippetti, A., Sanvito, S., Burke, K.: Self-interaction errors in density-functional calculations of electronic transport. Phys. Rev. Lett. 95, 146402 (2005) CrossRef
70.
Zurück zum Zitat Cuniberti, G., Fagas, G., Richter, K. (eds.): Introducing Molecular Electronics. Springer, Berlin (2005) Cuniberti, G., Fagas, G., Richter, K. (eds.): Introducing Molecular Electronics. Springer, Berlin (2005)
71.
Zurück zum Zitat Fiolhais, C., Nogueira, F., Marques, M.A. (eds.): A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620. Springer, Berlin (2003) MATH Fiolhais, C., Nogueira, F., Marques, M.A. (eds.): A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620. Springer, Berlin (2003) MATH
72.
Zurück zum Zitat Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001) CrossRef Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001) CrossRef
73.
Zurück zum Zitat Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002) CrossRef Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002) CrossRef
74.
Zurück zum Zitat Stokbro, K.: First-principles modeling of electron transport. J. Phys., Condens. Matter 20, 064216 (2008) CrossRef Stokbro, K.: First-principles modeling of electron transport. J. Phys., Condens. Matter 20, 064216 (2008) CrossRef
75.
Zurück zum Zitat Rungger, I., Sanvito, S.: Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008) CrossRef Rungger, I., Sanvito, S.: Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008) CrossRef
76.
Zurück zum Zitat Saha, K.K., Lu, W., Bernholc, J., Meunier, V.: First-principles methodology for quantum transport in multiterminal junctions. J. Chem. Phys. 131, 164105 (2009) CrossRef Saha, K.K., Lu, W., Bernholc, J., Meunier, V.: First-principles methodology for quantum transport in multiterminal junctions. J. Chem. Phys. 131, 164105 (2009) CrossRef
77.
Zurück zum Zitat Esfarjani, K., Zebarjadi, M., Kawazoe, Y.: Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys. Rev. B 73, 085406 (2006) CrossRef Esfarjani, K., Zebarjadi, M., Kawazoe, Y.: Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys. Rev. B 73, 085406 (2006) CrossRef
78.
Zurück zum Zitat Strange, M., Rostgaard, C., Häkkinen, H., Thygesen, K.S.: Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys. Rev. B 83, 115108 (2011) CrossRef Strange, M., Rostgaard, C., Häkkinen, H., Thygesen, K.S.: Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys. Rev. B 83, 115108 (2011) CrossRef
79.
Zurück zum Zitat Wang, J.-S., Wang, J., Lü, J.T.: Quantum thermal transport in nanostructures. Eur. Phys. J. B 62, 381 (2008) CrossRef Wang, J.-S., Wang, J., Lü, J.T.: Quantum thermal transport in nanostructures. Eur. Phys. J. B 62, 381 (2008) CrossRef
80.
Zurück zum Zitat McGaughey, A.J.H., Kaviany, M.: Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction. In: Advances in Heat Transfer, vol. 39, p. 169. Academic Press, San Diego (2006) McGaughey, A.J.H., Kaviany, M.: Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction. In: Advances in Heat Transfer, vol. 39, p. 169. Academic Press, San Diego (2006)
81.
Zurück zum Zitat McGaughey, A.J.H., Kaviany, M.: Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation. Phys. Rev. B 69, 094303 (2004) CrossRef McGaughey, A.J.H., Kaviany, M.: Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation. Phys. Rev. B 69, 094303 (2004) CrossRef
82.
Zurück zum Zitat Wang, R.Y., Segalman, R.A., Majumdar, A.: Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006) CrossRef Wang, R.Y., Segalman, R.A., Majumdar, A.: Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 89, 173113 (2006) CrossRef
83.
Zurück zum Zitat Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232 (1998) CrossRef Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232 (1998) CrossRef
85.
Zurück zum Zitat Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dulak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Moller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Hakkinen, H., Madsen, G.K.H., Nieminen, R.M., Norskov, J.K., Puska, M., Rantala, T.T., Schiotz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with gpaw: A real-space implementation of the projector augmented-wave method. J. Phys., Condens. Matter 22, 253202 (2010) CrossRef Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dulak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Moller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Hakkinen, H., Madsen, G.K.H., Nieminen, R.M., Norskov, J.K., Puska, M., Rantala, T.T., Schiotz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with gpaw: A real-space implementation of the projector augmented-wave method. J. Phys., Condens. Matter 22, 253202 (2010) CrossRef
86.
Zurück zum Zitat Tan, Z.W., Wang, J.-S., Gan, C.K.: First-principles study of heat transport properties of graphene nanoribbons. Nano Lett. 11, 214 (2010) CrossRef Tan, Z.W., Wang, J.-S., Gan, C.K.: First-principles study of heat transport properties of graphene nanoribbons. Nano Lett. 11, 214 (2010) CrossRef
88.
Zurück zum Zitat Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011) CrossRef Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011) CrossRef
89.
Zurück zum Zitat Aksamija, Z., Knezevic, I.: Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011) CrossRef Aksamija, Z., Knezevic, I.: Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011) CrossRef
90.
Zurück zum Zitat Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010) CrossRef Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010) CrossRef
91.
Zurück zum Zitat Jia, X., Hofmann, M., Meunier, V., Sumpter, B.G., Campos-Delgado, J., Manuel, J., Hyungbin, R.-H., Ya-Ping, S., Reina, H.A., Kong, J., Terrones, M., Dresselhaus, M.S.: Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701 (2009) CrossRef Jia, X., Hofmann, M., Meunier, V., Sumpter, B.G., Campos-Delgado, J., Manuel, J., Hyungbin, R.-H., Ya-Ping, S., Reina, H.A., Kong, J., Terrones, M., Dresselhaus, M.S.: Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701 (2009) CrossRef
92.
Zurück zum Zitat Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Zettl, J.M.T.A., Louie, S.G., Dai, H., Crommie, M.F.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616 (2011) CrossRef Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Zettl, J.M.T.A., Louie, S.G., Dai, H., Crommie, M.F.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616 (2011) CrossRef
93.
Zurück zum Zitat Ke, S.-H., Baranger, H.U., Yang, W.: Contact transparency of nanotube-molecule-nanotube junctions. Phys. Rev. Lett. 99, 146802 (2007) CrossRef Ke, S.-H., Baranger, H.U., Yang, W.: Contact transparency of nanotube-molecule-nanotube junctions. Phys. Rev. Lett. 99, 146802 (2007) CrossRef
94.
Zurück zum Zitat Yazyev, O.V., Katsnelson, M.I.: Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008) CrossRef Yazyev, O.V., Katsnelson, M.I.: Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008) CrossRef
95.
Zurück zum Zitat Kunstmann, J., Özdoğan, C., Quandt, A., Fehske, H.: Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B 83, 045414 (2011) CrossRef Kunstmann, J., Özdoğan, C., Quandt, A., Fehske, H.: Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B 83, 045414 (2011) CrossRef
96.
Zurück zum Zitat Prins, F., Barreiro, A., Ruitenberg, J.W., Seldenthuis, J.S., Aliaga-Alcalde, N., Vandersypen, L.M.K., van der Zant, H.S.J.: Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607 (2011) CrossRef Prins, F., Barreiro, A., Ruitenberg, J.W., Seldenthuis, J.S., Aliaga-Alcalde, N., Vandersypen, L.M.K., van der Zant, H.S.J.: Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607 (2011) CrossRef
97.
Zurück zum Zitat Guo, X., Small, J.P., Klare, J.E., Wang, Y., Purewal, M.S., Tam, I.W., Hong, B.H., Caldwell, R., Huang, L., O’Brien, S., Yan, J., Breslow, R., Wind, S.J., Hone, J., Kim, P., Nuckolls, C.: Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356 (2006) CrossRef Guo, X., Small, J.P., Klare, J.E., Wang, Y., Purewal, M.S., Tam, I.W., Hong, B.H., Caldwell, R., Huang, L., O’Brien, S., Yan, J., Breslow, R., Wind, S.J., Hone, J., Kim, P., Nuckolls, C.: Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356 (2006) CrossRef
98.
Zurück zum Zitat Zuev, Y.M., Chang, W., Kim, P.: Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009) CrossRef Zuev, Y.M., Chang, W., Kim, P.: Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009) CrossRef
99.
Zurück zum Zitat Velev, J., Butler, W.: On the equivalence of different techniques for evaluating the green function for a semi-infinite system using a localized basis. J. Phys., Condens. Matter 16, R637 (2004) CrossRef Velev, J., Butler, W.: On the equivalence of different techniques for evaluating the green function for a semi-infinite system using a localized basis. J. Phys., Condens. Matter 16, R637 (2004) CrossRef
100.
Zurück zum Zitat Lopez-Sancho, M.P., Lopez-Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F 14, 1205 (1984) CrossRef Lopez-Sancho, M.P., Lopez-Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F 14, 1205 (1984) CrossRef
102.
Zurück zum Zitat Zimmermann, J., Pavone, P., Cuniberti, G.: Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model. Phys. Rev. B 78, 045410 (2008) CrossRef Zimmermann, J., Pavone, P., Cuniberti, G.: Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model. Phys. Rev. B 78, 045410 (2008) CrossRef
103.
Zurück zum Zitat Sevinçli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010) CrossRef Sevinçli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010) CrossRef
104.
Zurück zum Zitat Mingo, N., Stewart, D.A. Broido, D.A., Srivastava, D.: Phonon transmission through defects in carbon nanotubes from first principles. Phys. Rev. B 77, 033418 (2008) CrossRef Mingo, N., Stewart, D.A. Broido, D.A., Srivastava, D.: Phonon transmission through defects in carbon nanotubes from first principles. Phys. Rev. B 77, 033418 (2008) CrossRef
105.
Zurück zum Zitat Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990) CrossRef Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990) CrossRef
106.
Zurück zum Zitat Lindsay, L., Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010) CrossRef Lindsay, L., Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010) CrossRef
107.
Zurück zum Zitat Gale, J.D.: Gulp—a computer program for the symmetry adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629 (1997) CrossRef Gale, J.D.: Gulp—a computer program for the symmetry adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629 (1997) CrossRef
108.
Zurück zum Zitat Galperin, M., Ratner, M.A., Nitzan, A.: Molecular transport junctions: vibrational effects. J. Phys., Condens. Matter 19, 103201 (2007) CrossRef Galperin, M., Ratner, M.A., Nitzan, A.: Molecular transport junctions: vibrational effects. J. Phys., Condens. Matter 19, 103201 (2007) CrossRef
109.
Zurück zum Zitat Horsfield, A.P., Bowler, D.R., Ness, H., Sánchez, C.G., Todorov, T.N., Fisher, A.J.: The transfer of energy between electrons and ions in solids. Rep. Prog. Phys. 69, 1195 (2006) CrossRef Horsfield, A.P., Bowler, D.R., Ness, H., Sánchez, C.G., Todorov, T.N., Fisher, A.J.: The transfer of energy between electrons and ions in solids. Rep. Prog. Phys. 69, 1195 (2006) CrossRef
110.
Zurück zum Zitat Lü, J.T., Wang, J.-S.: Coupled electron and phonon transport in one-dimensional atomic junctions. Phys. Rev. B 76, 165418 (2007) CrossRef Lü, J.T., Wang, J.-S.: Coupled electron and phonon transport in one-dimensional atomic junctions. Phys. Rev. B 76, 165418 (2007) CrossRef
111.
Zurück zum Zitat Hsu, B.C., Liu, Y.-S., Lin, S.H., Chen, Y.-C.: Seebeck coefficients in nanoscale junctions: Effects of electron-vibration scattering and local heating. Phys. Rev. B 83, 041404 (2011) CrossRef Hsu, B.C., Liu, Y.-S., Lin, S.H., Chen, Y.-C.: Seebeck coefficients in nanoscale junctions: Effects of electron-vibration scattering and local heating. Phys. Rev. B 83, 041404 (2011) CrossRef
112.
Zurück zum Zitat Asai, Y.: Nonequilibrium phonon effects on transport properties through atomic and molecular bridge junctions. Phys. Rev. B 78, 045434 (2008) MathSciNetCrossRef Asai, Y.: Nonequilibrium phonon effects on transport properties through atomic and molecular bridge junctions. Phys. Rev. B 78, 045434 (2008) MathSciNetCrossRef
113.
Zurück zum Zitat Jiang, J.-W., Wang, J.-S.: Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect. J. Appl. Phys. 110, 124319 (2011) CrossRef Jiang, J.-W., Wang, J.-S.: Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect. J. Appl. Phys. 110, 124319 (2011) CrossRef
114.
Zurück zum Zitat Choi, W.S., Ohta, H., Moon, S.J., Lee, Y.S., Noh, T.W.: Dimensional crossover of polaron dynamics in Nb:SrTiO3/SrTiO3 superlattices: Possible mechanism of thermopower enhancement. Phys. Rev. B 82, 024301 (2010) CrossRef Choi, W.S., Ohta, H., Moon, S.J., Lee, Y.S., Noh, T.W.: Dimensional crossover of polaron dynamics in Nb:SrTiO3/SrTiO3 superlattices: Possible mechanism of thermopower enhancement. Phys. Rev. B 82, 024301 (2010) CrossRef
115.
Zurück zum Zitat Scarola, V.W., Mahan, G.D.: Phonon drag effect in single-walled carbon nanotubes. Phys. Rev. B 66, 205405 (2002) CrossRef Scarola, V.W., Mahan, G.D.: Phonon drag effect in single-walled carbon nanotubes. Phys. Rev. B 66, 205405 (2002) CrossRef
Metadaten
Titel
First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes
verfasst von
Branislav K. Nikolić
Kamal K. Saha
Troels Markussen
Kristian S. Thygesen
Publikationsdatum
01.03.2012
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2012
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-012-0386-y

Weitere Artikel der Ausgabe 1/2012

Journal of Computational Electronics 1/2012 Zur Ausgabe

Neuer Inhalt