Skip to main content
Erschienen in: Journal of Computational Electronics 3/2018

30.06.2018

Boosting the performance of a nanoscale graphene nanoribbon field-effect transistor using graded gate engineering

verfasst von: Khalil Tamersit, Fayçal Djeffal

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we report the device performance of a new graphene nanoribbon field-effect transistor (GNRFET) with a linearly graded binary metal alloy gate through a quantum simulation study. The proposed device is simulated by solving the Schrödinger equation using the mode space non-equilibrium Green’s function (NEGF) formalism coupled self-consistently with a two-dimensional Poisson equation in the ballistic limit. Comparisons are made for the IV characteristics, subthreshold swing, voltage gain, and cut-off frequency among conventional GNRFETs and work-function-engineered gate GNRFETs. Moreover, the impact of variation in GNR channel length on device performance is also studied. We have found that the GNRFET endowed with work-function-engineered gate can improve the subthreshold swing and provide higher voltage gain and cut-off frequency than the conventional GNRFET. The obtained results indicate that the proposed device can alleviate the critical problem and further improve immunity against short channel effects of nanoscale GNRFETs for high performance analog sub-10-nm technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhimanapati, G.R., et al.: Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015)CrossRef Bhimanapati, G.R., et al.: Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015)CrossRef
2.
Zurück zum Zitat Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)CrossRef Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014)CrossRef
3.
Zurück zum Zitat Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef
4.
Zurück zum Zitat Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef
5.
Zurück zum Zitat Vo, T.H., Shekhirev, M., Kunkel, D.A., Morton, M.D., Berglund, E., Kong, L., Wilson, P.M., Dowben, P.A., Enders, A., Sinitskii, A.: Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014)CrossRef Vo, T.H., Shekhirev, M., Kunkel, D.A., Morton, M.D., Berglund, E., Kong, L., Wilson, P.M., Dowben, P.A., Enders, A., Sinitskii, A.: Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014)CrossRef
6.
Zurück zum Zitat Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803-1–216803-4 (2006)CrossRef Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803-1–216803-4 (2006)CrossRef
7.
Zurück zum Zitat Marmolejo-Tejada, J.M., Velasco-Medina, J.: Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48, 18–38 (2016)CrossRef Marmolejo-Tejada, J.M., Velasco-Medina, J.: Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48, 18–38 (2016)CrossRef
8.
Zurück zum Zitat Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803-1–206803-4 (2008)CrossRef Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803-1–206803-4 (2008)CrossRef
9.
Zurück zum Zitat Liao, L., Bai, J., Lin, Y.-C., Qu, Y., Huang, Y., Duan, X.: High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22(17), 1941–1945 (2010)CrossRef Liao, L., Bai, J., Lin, Y.-C., Qu, Y., Huang, Y., Duan, X.: High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22(17), 1941–1945 (2010)CrossRef
10.
Zurück zum Zitat Shin, Y.-S., Son, J.Y., Jo, M.-H., Shin, Y.-H., Jang, H.M.: High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography. J. Am. Chem. Soc. 133(15), 5623–5625 (2011)CrossRef Shin, Y.-S., Son, J.Y., Jo, M.-H., Shin, Y.-H., Jang, H.M.: High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography. J. Am. Chem. Soc. 133(15), 5623–5625 (2011)CrossRef
11.
Zurück zum Zitat Llinas, J.P., et al.: Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8(1), 633 (2017)CrossRef Llinas, J.P., et al.: Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8(1), 633 (2017)CrossRef
12.
Zurück zum Zitat Guo, J.: Modeling of graphene nanoribbon devices. Nanoscale 4(18), 5538–5548 (2012)CrossRef Guo, J.: Modeling of graphene nanoribbon devices. Nanoscale 4(18), 5538–5548 (2012)CrossRef
13.
Zurück zum Zitat Tajarrod, M.H., Saghai, H.R.: High Ion/Ioff current ratio graphene field effect transistor: the role of line defect. Beilstein J. Nanotechnol. 6, 2062–2068 (2015)CrossRef Tajarrod, M.H., Saghai, H.R.: High Ion/Ioff current ratio graphene field effect transistor: the role of line defect. Beilstein J. Nanotechnol. 6, 2062–2068 (2015)CrossRef
14.
Zurück zum Zitat Nazari, A., Faez, R., Shamloo, H.: Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect. Superlattices Microstruct. 97, 28–45 (2016)CrossRef Nazari, A., Faez, R., Shamloo, H.: Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect. Superlattices Microstruct. 97, 28–45 (2016)CrossRef
15.
Zurück zum Zitat Naderi, A.: Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region. Superlattices Microstruct. 89, 170–178 (2016)CrossRef Naderi, A.: Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region. Superlattices Microstruct. 89, 170–178 (2016)CrossRef
16.
Zurück zum Zitat Wang, W., Yang, X., Li, N., Zhang, L., Zhang, T., Yue, G.: Numerical study on the performance metrics of lightly doped drain and source graphene nanoribbon field effect transistors with double-material-gate. Superlattices Microstruct. 64, 227–236 (2013)CrossRef Wang, W., Yang, X., Li, N., Zhang, L., Zhang, T., Yue, G.: Numerical study on the performance metrics of lightly doped drain and source graphene nanoribbon field effect transistors with double-material-gate. Superlattices Microstruct. 64, 227–236 (2013)CrossRef
17.
Zurück zum Zitat Lenka, A.S., Mishra, S., Mishra, S., Bhanja, U., Mishra, G.P.: An extensive investigation of work function modulated trapezoidal recessed channel MOSFET. Superlattices Microstruct. 111, 878–888 (2017)CrossRef Lenka, A.S., Mishra, S., Mishra, S., Bhanja, U., Mishra, G.P.: An extensive investigation of work function modulated trapezoidal recessed channel MOSFET. Superlattices Microstruct. 111, 878–888 (2017)CrossRef
18.
Zurück zum Zitat Tsui, Bing-Yue, Huang, Chih-Feng: Wide range work function modulation of binary alloys for MOSFET application. IEEE Electron Device Lett. 24(3), 153–155 (2003)CrossRef Tsui, Bing-Yue, Huang, Chih-Feng: Wide range work function modulation of binary alloys for MOSFET application. IEEE Electron Device Lett. 24(3), 153–155 (2003)CrossRef
19.
Zurück zum Zitat Manna, B., Sarkhel, S., Islam, N., Sarkar, S., Sarkar, S.K.: Spatial composition grading of binary metal alloy gate electrode for short-channel SOI/SON MOSFET application. IEEE Trans. Electron Devices 59(12), 3280–3287 (2012)CrossRef Manna, B., Sarkhel, S., Islam, N., Sarkar, S., Sarkar, S.K.: Spatial composition grading of binary metal alloy gate electrode for short-channel SOI/SON MOSFET application. IEEE Trans. Electron Devices 59(12), 3280–3287 (2012)CrossRef
20.
Zurück zum Zitat Deb, S., Singh, N.B., Islam, N., Sarkar, S.K.: Work function engineering with linearly graded binary metal alloy gate electrode for short-channel SOI MOSFET. IEEE Trans. Nanotechnol. 11(3), 472–478 (2012)CrossRef Deb, S., Singh, N.B., Islam, N., Sarkar, S.K.: Work function engineering with linearly graded binary metal alloy gate electrode for short-channel SOI MOSFET. IEEE Trans. Nanotechnol. 11(3), 472–478 (2012)CrossRef
21.
Zurück zum Zitat Gunlycke, D., Areshkin, D.A., Li, J., Mintmire, J.W., White, C.T.: Graphene nanostrip digital memory device. Nano Lett. 7(12), 3608–3611 (2007)CrossRef Gunlycke, D., Areshkin, D.A., Li, J., Mintmire, J.W., White, C.T.: Graphene nanostrip digital memory device. Nano Lett. 7(12), 3608–3611 (2007)CrossRef
22.
Zurück zum Zitat Zhao, P., Guo, J.: Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods. J. Appl. Phys. 105(3), 034503–034507 (2009)CrossRef Zhao, P., Guo, J.: Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods. J. Appl. Phys. 105(3), 034503–034507 (2009)CrossRef
23.
Zurück zum Zitat Zheng, H., Wang, Z., Luo, T., Shi, Q., Chen, J.: Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B 75(16), 165414–165419 (2007)CrossRef Zheng, H., Wang, Z., Luo, T., Shi, Q., Chen, J.: Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B 75(16), 165414–165419 (2007)CrossRef
24.
Zurück zum Zitat Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)CrossRef Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)CrossRef
25.
Zurück zum Zitat Tamersit, K., Djeffal, F.: Double-gate graphene nanoribbon field-effect transistor for dna and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180–4191 (2016)CrossRef Tamersit, K., Djeffal, F.: Double-gate graphene nanoribbon field-effect transistor for dna and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180–4191 (2016)CrossRef
26.
Zurück zum Zitat Yousefi, R., Shabani, M., Arjmandi, M., Ghoreishi, S.S.: A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET. Superlattices Microstruct. 60, 169–178 (2013)CrossRef Yousefi, R., Shabani, M., Arjmandi, M., Ghoreishi, S.S.: A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET. Superlattices Microstruct. 60, 169–178 (2013)CrossRef
27.
Zurück zum Zitat Koswatta, S.O., Lundstrom, M.S., Anantram, M.P., Nikonov, D.E.: Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87, 253107 (2005)CrossRef Koswatta, S.O., Lundstrom, M.S., Anantram, M.P., Nikonov, D.E.: Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87, 253107 (2005)CrossRef
28.
Zurück zum Zitat Guo, J., Datta, S., Lundstrom, M., Anantam, M.P.: Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2), 257–276 (2004)CrossRef Guo, J., Datta, S., Lundstrom, M., Anantam, M.P.: Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2), 257–276 (2004)CrossRef
29.
Zurück zum Zitat Koswatta, S.O., Nikonov, D.E., Lundstrom, M.S.: Computational study of carbon nanotube p–i–n tunnel FETs. IEEE IEDM Tech. Digest 1, 518 (2005) Koswatta, S.O., Nikonov, D.E., Lundstrom, M.S.: Computational study of carbon nanotube p–i–n tunnel FETs. IEEE IEDM Tech. Digest 1, 518 (2005)
30.
Zurück zum Zitat Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: NanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices 50(9), 1914–1925 (2003)CrossRef Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: NanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices 50(9), 1914–1925 (2003)CrossRef
31.
Zurück zum Zitat Guo, J., Hasan, S., Javey, A., Bosman, G., Lundstrom, M.: Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4(6), 715–721 (2005)CrossRef Guo, J., Hasan, S., Javey, A., Bosman, G., Lundstrom, M.: Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4(6), 715–721 (2005)CrossRef
32.
Zurück zum Zitat Yoon, Y., Fiori, G., Hong, S., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008)CrossRef Yoon, Y., Fiori, G., Hong, S., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008)CrossRef
33.
Zurück zum Zitat Djeffal, F., Lakhdar, N., Yousfi, A.: An optimized design of 10-nm-scale dual-material surrounded gate MOSFETs for digital circuit applications. Physica E 44(1), 339–344 (2011)CrossRef Djeffal, F., Lakhdar, N., Yousfi, A.: An optimized design of 10-nm-scale dual-material surrounded gate MOSFETs for digital circuit applications. Physica E 44(1), 339–344 (2011)CrossRef
34.
Zurück zum Zitat Djeffal, F., Dibi, Z., Hafiane, M.L., Arar, D.: Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks. Mater. Sci. Eng. C 27(5–8), 1111–1116 (2007)CrossRef Djeffal, F., Dibi, Z., Hafiane, M.L., Arar, D.: Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks. Mater. Sci. Eng. C 27(5–8), 1111–1116 (2007)CrossRef
35.
Zurück zum Zitat Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28(8), 760–762 (2007)CrossRef Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28(8), 760–762 (2007)CrossRef
36.
Zurück zum Zitat Orouji, A.A., Arefinia, Z.: Detailed simulation study of a dual material gate carbon nanotube field-effect transistor. Physica E 41(4), 552–557 (2009)CrossRef Orouji, A.A., Arefinia, Z.: Detailed simulation study of a dual material gate carbon nanotube field-effect transistor. Physica E 41(4), 552–557 (2009)CrossRef
37.
Zurück zum Zitat Wang, W., Li, N., Xia, C., Xiao, G., Ren, Y., Li, H., Zheng, L., Li, J., Jiang, J., Chen, X., Wang, K.: Quantum simulation study of single halo dual-material gate CNTFETs. Solid-State Electron. 91, 147–151 (2014)CrossRef Wang, W., Li, N., Xia, C., Xiao, G., Ren, Y., Li, H., Zheng, L., Li, J., Jiang, J., Chen, X., Wang, K.: Quantum simulation study of single halo dual-material gate CNTFETs. Solid-State Electron. 91, 147–151 (2014)CrossRef
38.
Zurück zum Zitat Wang, W., Yang, X., Li, N., Xiao, G., Jiang, S., Xia, C., Wang, Y.: Transport study of gate and channel engineering on the surrounding-gate CNTFETs based on NEGF quantum theory. J. Comput. Electron. 13(1), 192–197 (2013)CrossRef Wang, W., Yang, X., Li, N., Xiao, G., Jiang, S., Xia, C., Wang, Y.: Transport study of gate and channel engineering on the surrounding-gate CNTFETs based on NEGF quantum theory. J. Comput. Electron. 13(1), 192–197 (2013)CrossRef
39.
Zurück zum Zitat Jain, A.K., Sahay, S., Kumar, M.J.: Controlling L-BTBT in emerging nanotube FETs using dual-material gate. IEEE J. Electron Devices Soc. 6, 611–621 (2018)CrossRef Jain, A.K., Sahay, S., Kumar, M.J.: Controlling L-BTBT in emerging nanotube FETs using dual-material gate. IEEE J. Electron Devices Soc. 6, 611–621 (2018)CrossRef
40.
Zurück zum Zitat Djeffal, F., Bendib, T., Benzid, R., Benhaya, A.: An approach based on particle swarm computation to simulate the nanoscale DG MOSFET-based circuits. Turkish J. Electr. Eng. Comput. Sci. 18, 1131–1141 (2010) Djeffal, F., Bendib, T., Benzid, R., Benhaya, A.: An approach based on particle swarm computation to simulate the nanoscale DG MOSFET-based circuits. Turkish J. Electr. Eng. Comput. Sci. 18, 1131–1141 (2010)
Metadaten
Titel
Boosting the performance of a nanoscale graphene nanoribbon field-effect transistor using graded gate engineering
verfasst von
Khalil Tamersit
Fayçal Djeffal
Publikationsdatum
30.06.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1209-6

Weitere Artikel der Ausgabe 3/2018

Journal of Computational Electronics 3/2018 Zur Ausgabe

Neuer Inhalt