Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2016

01.04.2016

A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease

verfasst von: Karthik Kumaravelu, David T. Brocker, Warren M. Grill

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson’s disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agid, Y., Javoy-Agid, F., & Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. Movement Disorders, 2(7), 166–230. Agid, Y., Javoy-Agid, F., & Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. Movement Disorders, 2(7), 166–230.
Zurück zum Zitat Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.CrossRefPubMed Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.CrossRefPubMed
Zurück zum Zitat Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89(2), 1150–1160.CrossRefPubMed Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89(2), 1150–1160.CrossRefPubMed
Zurück zum Zitat Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., & Bevan, M. D. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.CrossRefPubMedPubMedCentral Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., & Bevan, M. D. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.PubMed Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.PubMed
Zurück zum Zitat Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25.CrossRefPubMedPubMedCentral Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25.CrossRefPubMedPubMedCentral
Zurück zum Zitat Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8. Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8.
Zurück zum Zitat Bosch, C., Degos, B., Deniau, J.-M., & Venance, L. (2011). Subthalamic nucleus high-frequency stimulation generates a concomitant synaptic excitation–inhibition in substantia nigra pars reticulata. The Journal of Physiology, 589(17), 4189–4207.CrossRefPubMedPubMedCentral Bosch, C., Degos, B., Deniau, J.-M., & Venance, L. (2011). Subthalamic nucleus high-frequency stimulation generates a concomitant synaptic excitation–inhibition in substantia nigra pars reticulata. The Journal of Physiology, 589(17), 4189–4207.CrossRefPubMedPubMedCentral
Zurück zum Zitat Brocker, D.T., Swan, B.D., Turner, D.A., Gross, R.E., Tatter, S.B., Miller Koop, M., . . . Grill, W.M. (2013). Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Experimental Neurology, 239, 60–67. Brocker, D.T., Swan, B.D., Turner, D.A., Gross, R.E., Tatter, S.B., Miller Koop, M., . . . Grill, W.M. (2013). Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Experimental Neurology, 239, 60–67.
Zurück zum Zitat Brown, D. A. (2010). Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. Journal of Molecular Neuroscience, 41(3), 340–346.CrossRefPubMed Brown, D. A. (2010). Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. Journal of Molecular Neuroscience, 41(3), 340–346.CrossRefPubMed
Zurück zum Zitat Chang, H., & Kitai, S. (1985). Projection neurons of the nucleus accumbens: an intracellular labeling study. Brain Research, 347(1), 112–116.CrossRefPubMed Chang, H., & Kitai, S. (1985). Projection neurons of the nucleus accumbens: an intracellular labeling study. Brain Research, 347(1), 112–116.CrossRefPubMed
Zurück zum Zitat Chang, H., Wilson, C., & Kitai, S. (1982). A Golgi study of rat neostriatal neurons: light microscopic analysis. Journal of Comparative Neurology, 208(2), 107–126.CrossRefPubMed Chang, H., Wilson, C., & Kitai, S. (1982). A Golgi study of rat neostriatal neurons: light microscopic analysis. Journal of Comparative Neurology, 208(2), 107–126.CrossRefPubMed
Zurück zum Zitat Cruz, A. V., Mallet, N., Magill, P. J., Brown, P., & Averbeck, B. B. (2012). Effects of dopamine depletion on information flow. PNAS, 109(44), 18126–18131.CrossRef Cruz, A. V., Mallet, N., Magill, P. J., Brown, P., & Averbeck, B. B. (2012). Effects of dopamine depletion on information flow. PNAS, 109(44), 18126–18131.CrossRef
Zurück zum Zitat Degos, B., Deniau, J.-M., Thierry, A.-M., Glowinski, J., Pezard, L., & Maurice, N. (2005). Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. The Journal of Neuroscience, 25(33), 7687–7696.CrossRefPubMed Degos, B., Deniau, J.-M., Thierry, A.-M., Glowinski, J., Pezard, L., & Maurice, N. (2005). Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. The Journal of Neuroscience, 25(33), 7687–7696.CrossRefPubMed
Zurück zum Zitat DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.CrossRefPubMed DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.CrossRefPubMed
Zurück zum Zitat Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100(5), 2807–2818.CrossRefPubMedPubMedCentral Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100(5), 2807–2818.CrossRefPubMedPubMedCentral
Zurück zum Zitat Farries, M. A., Kita, H., & Wilson, C. J. (2010). Dynamic spike threshold and zero membrane slope conductance shape the response of subthalamic neurons to cortical input. The Journal of Neuroscience, 30(39), 13180–13191.CrossRefPubMedPubMedCentral Farries, M. A., Kita, H., & Wilson, C. J. (2010). Dynamic spike threshold and zero membrane slope conductance shape the response of subthalamic neurons to cortical input. The Journal of Neuroscience, 30(39), 13180–13191.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fogelson, N., Kühn, A.A., Silberstein, P., Limousin, P.D., Hariz, M., Trottenberg, T., . . . Brown, P. (2005). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382(1), 5–9. Fogelson, N., Kühn, A.A., Silberstein, P., Limousin, P.D., Hariz, M., Trottenberg, T., . . . Brown, P. (2005). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382(1), 5–9.
Zurück zum Zitat Fujimoto, K., & Kita, H. (1993). Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Research, 609(1), 185–192.CrossRefPubMed Fujimoto, K., & Kita, H. (1993). Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Research, 609(1), 185–192.CrossRefPubMed
Zurück zum Zitat Götz, T., Kraushaar, U., Geiger, J., Lübke, J., Berger, T., & Jonas, P. (1997). Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. The Journal of Neuroscience, 17(1), 204–215.PubMed Götz, T., Kraushaar, U., Geiger, J., Lübke, J., Berger, T., & Jonas, P. (1997). Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. The Journal of Neuroscience, 17(1), 204–215.PubMed
Zurück zum Zitat Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport, 15(7), 1137–1140.CrossRefPubMed Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport, 15(7), 1137–1140.CrossRefPubMed
Zurück zum Zitat Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28(3), 425–441.CrossRefPubMedPubMedCentral Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28(3), 425–441.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.CrossRefPubMed Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.CrossRefPubMed
Zurück zum Zitat Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience, 23(5), 1916–1923.PubMed Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience, 23(5), 1916–1923.PubMed
Zurück zum Zitat Hollerman, J. R., & Grace, A. A. (1992). Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Research, 590(1), 291–299.CrossRefPubMed Hollerman, J. R., & Grace, A. A. (1992). Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Research, 590(1), 291–299.CrossRefPubMed
Zurück zum Zitat Hornykiewicz, O. (1998). Biochemical aspects of Parkinson’s disease. Neurology, 51(2 Suppl 2), S2–S9.CrossRefPubMed Hornykiewicz, O. (1998). Biochemical aspects of Parkinson’s disease. Neurology, 51(2 Suppl 2), S2–S9.CrossRefPubMed
Zurück zum Zitat Humphries, M. D., & Gurney, K. (2012). Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output. European Journal of Neuroscience, 36(2), 2240–2251.CrossRefPubMed Humphries, M. D., & Gurney, K. (2012). Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output. European Journal of Neuroscience, 36(2), 2240–2251.CrossRefPubMed
Zurück zum Zitat Ikarashi, Y., Takahashi, A., Ishimaru, H., Arai, T., & Maruyama, Y. (1997). Regulation of Dopamine D1 and D2 Receptors on Striatal Acetylcholine Release in Rats. Brain Research Bulletin, 43(1), 107–115.CrossRefPubMed Ikarashi, Y., Takahashi, A., Ishimaru, H., Arai, T., & Maruyama, Y. (1997). Regulation of Dopamine D1 and D2 Receptors on Striatal Acetylcholine Release in Rats. Brain Research Bulletin, 43(1), 107–115.CrossRefPubMed
Zurück zum Zitat Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.CrossRefPubMed Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.CrossRefPubMed
Zurück zum Zitat Jankovic, J., Rajput, A. H., McDermott, M. P., & Perl, D. P. (2000). The evolution of diagnosis in early Parkinson disease. Archives of Neurology, 57(3), 369–372.CrossRefPubMed Jankovic, J., Rajput, A. H., McDermott, M. P., & Perl, D. P. (2000). The evolution of diagnosis in early Parkinson disease. Archives of Neurology, 57(3), 369–372.CrossRefPubMed
Zurück zum Zitat Kang, G., & Lowery, M. M. (2013). Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 244–253.CrossRefPubMed Kang, G., & Lowery, M. M. (2013). Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 244–253.CrossRefPubMed
Zurück zum Zitat Kita, H. (2001). Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience, 105(4), 871–879.CrossRefPubMed Kita, H. (2001). Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience, 105(4), 871–879.CrossRefPubMed
Zurück zum Zitat Kita, H., & Kita, T. (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. The Journal of Neuroscience, 31(28), 10311–10322.CrossRefPubMedPubMedCentral Kita, H., & Kita, T. (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. The Journal of Neuroscience, 31(28), 10311–10322.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kita, H., & Kitai, S. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564(2), 296–305.CrossRefPubMed Kita, H., & Kitai, S. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564(2), 296–305.CrossRefPubMed
Zurück zum Zitat Kühn, A.A., Kempf, F., Brücke, C., Doyle, L.G., Martinez-Torres, I., Pogosyan, A., . . . Hariz, M.I. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. The Journal of Neuroscience, 28(24), 6165–6173. Kühn, A.A., Kempf, F., Brücke, C., Doyle, L.G., Martinez-Torres, I., Pogosyan, A., . . . Hariz, M.I. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. The Journal of Neuroscience, 28(24), 6165–6173.
Zurück zum Zitat Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.CrossRefPubMed Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.CrossRefPubMed
Zurück zum Zitat Li, Q., Ke, Y., Chan, D.C., Qian, Z.-M., Yung, K.K., Ko, H., . . . Yung, W.-H. (2012). Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron, 76(5), 1030–1041. Li, Q., Ke, Y., Chan, D.C., Qian, Z.-M., Yung, K.K., Ko, H., . . . Yung, W.-H. (2012). Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron, 76(5), 1030–1041.
Zurück zum Zitat Mallet, N., Ballion, B., Le Moine, C., & Gonon, F. (2006). Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. The Journal of Neuroscience, 26(14), 3875–3884.CrossRefPubMed Mallet, N., Ballion, B., Le Moine, C., & Gonon, F. (2006). Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. The Journal of Neuroscience, 26(14), 3875–3884.CrossRefPubMed
Zurück zum Zitat Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008a). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of Neuroscience, 28(52), 14245–14258.CrossRefPubMedPubMedCentral Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008a). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of Neuroscience, 28(52), 14245–14258.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mallet, N., Pogosyan, A., Sharott, A., Csicsvari, J., Bolam, J. P., Brown, P., & Magill, P. J. (2008b). Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. The Journal of Neuroscience, 28(18), 4795–4806.CrossRefPubMed Mallet, N., Pogosyan, A., Sharott, A., Csicsvari, J., Bolam, J. P., Brown, P., & Magill, P. J. (2008b). Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. The Journal of Neuroscience, 28(18), 4795–4806.CrossRefPubMed
Zurück zum Zitat Marsden, C., Parkes, J., & Quinn, N. (1982). Fluctuations of disability in Parkinson’s disease: clinical aspects. Movement disorders. London: Butterworth, 198(1), 96–122. Marsden, C., Parkes, J., & Quinn, N. (1982). Fluctuations of disability in Parkinson’s disease: clinical aspects. Movement disorders. London: Butterworth, 198(1), 96–122.
Zurück zum Zitat McCarthy, M., Moore-Kochlacs, C., Gu, X., Boyden, E., Han, X., & Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences, 108(28), 11620–11625.CrossRef McCarthy, M., Moore-Kochlacs, C., Gu, X., Boyden, E., Han, X., & Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences, 108(28), 11620–11625.CrossRef
Zurück zum Zitat McConnell, G. C., So, R. Q., Hilliard, J. D., Lopomo, P., & Grill, W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. The Journal of Neuroscience, 32(45), 15657–15668.CrossRefPubMedPubMedCentral McConnell, G. C., So, R. Q., Hilliard, J. D., Lopomo, P., & Grill, W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. The Journal of Neuroscience, 32(45), 15657–15668.CrossRefPubMedPubMedCentral
Zurück zum Zitat Miguelez, C., Morin, S., Martinez, A., Goillandeau, M., Bezard, E., Bioulac, B., & Baufreton, J. (2012). Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. The Journal of Physiology, 590(22), 5861–5875.CrossRefPubMedPubMedCentral Miguelez, C., Morin, S., Martinez, A., Goillandeau, M., Bezard, E., Bioulac, B., & Baufreton, J. (2012). Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. The Journal of Physiology, 590(22), 5861–5875.CrossRefPubMedPubMedCentral
Zurück zum Zitat Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7(8), e1002124.CrossRefPubMedPubMedCentral Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7(8), e1002124.CrossRefPubMedPubMedCentral
Zurück zum Zitat Moro, E., Lozano, A.M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., . . . Hariz, M.I. (2010). Long‐term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25(5), 578–586. Moro, E., Lozano, A.M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., . . . Hariz, M.I. (2010). Long‐term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25(5), 578–586.
Zurück zum Zitat Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.CrossRefPubMed Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.CrossRefPubMed
Zurück zum Zitat Nakanishi, H., Kita, H., & Kitai, S. (1991). Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation. Brain Research, 549(2), 285–291.CrossRefPubMed Nakanishi, H., Kita, H., & Kitai, S. (1991). Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation. Brain Research, 549(2), 285–291.CrossRefPubMed
Zurück zum Zitat Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., . . . Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84(1), 289–300. Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., . . . Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84(1), 289–300.
Zurück zum Zitat Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’pathway. Neuroscience Research, 43(2), 111–117.CrossRefPubMed Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’pathway. Neuroscience Research, 43(2), 111–117.CrossRefPubMed
Zurück zum Zitat Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.CrossRefPubMed Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.CrossRefPubMed
Zurück zum Zitat Otsuka, T., Abe, T., Tsukagawa, T., & Song, W.-J. (2004). Conductance-based model of the voltage-dependent generation of a plateau potential in subthalamic neurons. Journal of Neurophysiology, 92(1), 255–264.CrossRefPubMed Otsuka, T., Abe, T., Tsukagawa, T., & Song, W.-J. (2004). Conductance-based model of the voltage-dependent generation of a plateau potential in subthalamic neurons. Journal of Neurophysiology, 92(1), 255–264.CrossRefPubMed
Zurück zum Zitat Pan, M.-K., Tai, C.-H., Liu, W.-C., Pei, J.-C., Lai, W.-S., & Kuo, C.-C. (2014). Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits. The Journal of Clinical Investigation, 124(10), 4629.CrossRefPubMedPubMedCentral Pan, M.-K., Tai, C.-H., Liu, W.-C., Pei, J.-C., Lai, W.-S., & Kuo, C.-C. (2014). Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits. The Journal of Clinical Investigation, 124(10), 4629.CrossRefPubMedPubMedCentral
Zurück zum Zitat Pang, Z., Ling, G. Y., Gajendiran, M., & Xu, Z. C. (2001). Enhanced excitatory synaptic transmission in spiny neurons of rat striatum after unilateral dopamine denervation. Neuroscience Letters, 308(3), 201–205.CrossRefPubMed Pang, Z., Ling, G. Y., Gajendiran, M., & Xu, Z. C. (2001). Enhanced excitatory synaptic transmission in spiny neurons of rat striatum after unilateral dopamine denervation. Neuroscience Letters, 308(3), 201–205.CrossRefPubMed
Zurück zum Zitat Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.CrossRefPubMed Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.CrossRefPubMed
Zurück zum Zitat Quinn, N., Luthert, P., Honavar, M., & Marsden, C. (1989). Pure akinesia due to Lewy body Parkinson’s disease: a case with pathology. Movement Disorders, 4(1), 85–89.CrossRefPubMed Quinn, N., Luthert, P., Honavar, M., & Marsden, C. (1989). Pure akinesia due to Lewy body Parkinson’s disease: a case with pathology. Movement Disorders, 4(1), 85–89.CrossRefPubMed
Zurück zum Zitat Rajput, A., Sitte, H., Rajput, A., Fenton, M., Pifl, C., & Hornykiewicz, O. (2008). Globus pallidus dopamine and Parkinson motor subtypes Clinical and brain biochemical correlation. Neurology, 70(16 Part 2), 1403–1410.CrossRefPubMed Rajput, A., Sitte, H., Rajput, A., Fenton, M., Pifl, C., & Hornykiewicz, O. (2008). Globus pallidus dopamine and Parkinson motor subtypes Clinical and brain biochemical correlation. Neurology, 70(16 Part 2), 1403–1410.CrossRefPubMed
Zurück zum Zitat Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571.PubMed Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571.PubMed
Zurück zum Zitat Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.CrossRefPubMed Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.CrossRefPubMed
Zurück zum Zitat Ryu, S.B., Bae, E.K., Kim, J., Hwang, Y.S., Im, C., Chang, J.W., . . . Kim, K.H. (2013). Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson’s Disease Model Rats. The Korean Journal of Physiology & Pharmacology, 17(4), 299–306. Ryu, S.B., Bae, E.K., Kim, J., Hwang, Y.S., Im, C., Chang, J.W., . . . Kim, K.H. (2013). Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson’s Disease Model Rats. The Korean Journal of Physiology & Pharmacology, 17(4), 299–306.
Zurück zum Zitat Shaw, F.-Z., & Liao, Y.-F. (2005). Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats. Journal of Neurophysiology, 93(5), 2435–2448.CrossRefPubMed Shaw, F.-Z., & Liao, Y.-F. (2005). Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats. Journal of Neurophysiology, 93(5), 2435–2448.CrossRefPubMed
Zurück zum Zitat Sims, R. E., Woodhall, G. L., Wilson, C. L., & Stanford, I. M. (2008). Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. European Journal of Neuroscience, 28(12), 2401–2408.CrossRefPubMed Sims, R. E., Woodhall, G. L., Wilson, C. L., & Stanford, I. M. (2008). Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. European Journal of Neuroscience, 28(12), 2401–2408.CrossRefPubMed
Zurück zum Zitat So, R. Q., Kent, A. R., & Grill, W. M. (2012a). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of Computational Neuroscience, 32(3), 499–519.CrossRefPubMedPubMedCentral So, R. Q., Kent, A. R., & Grill, W. M. (2012a). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of Computational Neuroscience, 32(3), 499–519.CrossRefPubMedPubMedCentral
Zurück zum Zitat So, R. Q., McConnell, G. C., August, A. T., & Grill, W. M. (2012b). Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemi-Parkinsonian rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 626–635.CrossRefPubMedPubMedCentral So, R. Q., McConnell, G. C., August, A. T., & Grill, W. M. (2012b). Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemi-Parkinsonian rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 626–635.CrossRefPubMedPubMedCentral
Zurück zum Zitat Taverna, S., Ilijic, E., & Surmeier, D. J. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. The Journal of Neuroscience, 28(21), 5504–5512.CrossRefPubMedPubMedCentral Taverna, S., Ilijic, E., & Surmeier, D. J. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. The Journal of Neuroscience, 28(21), 5504–5512.CrossRefPubMedPubMedCentral
Zurück zum Zitat Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., . . . Schnitzler, A. (2004). Ten‐Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement disorders, 19(11), 1328–1333. Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., . . . Schnitzler, A. (2004). Ten‐Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement disorders, 19(11), 1328–1333.
Zurück zum Zitat Tremblay, L., & Filion, M. (1989). Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Research, 498(1), 17–33.CrossRefPubMed Tremblay, L., & Filion, M. (1989). Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Research, 498(1), 17–33.CrossRefPubMed
Zurück zum Zitat Walker, H.C., Huang, H., Gonzalez, C.L., Bryant, J.E., Killen, J., Knowlton, R.C., . . . Guthrie, B.L. (2012). Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor. Movement Disorders, 27(11), 1404–1412. Walker, H.C., Huang, H., Gonzalez, C.L., Bryant, J.E., Killen, J., Knowlton, R.C., . . . Guthrie, B.L. (2012). Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor. Movement Disorders, 27(11), 1404–1412.
Zurück zum Zitat Weaver, F.M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W.J., . . . Moy, C.S. (2009). Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA, 301(1), 63–73. Weaver, F.M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W.J., . . . Moy, C.S. (2009). Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA, 301(1), 63–73.
Zurück zum Zitat Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95(4), 2120–2133.CrossRefPubMed Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95(4), 2120–2133.CrossRefPubMed
Zurück zum Zitat Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. The Journal of Neuroscience, 28(46), 11916–11924.CrossRefPubMedPubMedCentral Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. The Journal of Neuroscience, 28(46), 11916–11924.CrossRefPubMedPubMedCentral
Zurück zum Zitat Yamawaki, N., Stanford, I. M., Hall, S. D., & Woodhall, G. L. (2008). Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. Neuroscience, 151(2), 386–395.CrossRefPubMed Yamawaki, N., Stanford, I. M., Hall, S. D., & Woodhall, G. L. (2008). Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. Neuroscience, 151(2), 386–395.CrossRefPubMed
Metadaten
Titel
A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease
verfasst von
Karthik Kumaravelu
David T. Brocker
Warren M. Grill
Publikationsdatum
01.04.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2016
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0593-9

Weitere Artikel der Ausgabe 2/2016

Journal of Computational Neuroscience 2/2016 Zur Ausgabe

Premium Partner