Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 1/2017

20.08.2014

Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio

verfasst von: S. Tangjitsitcharoen, P. Thesniyom, S. Ratanakuakangwan

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this research is to propose the practical model to predict the in-process surface roughness during the ball-end milling process by utilizing the dynamic cutting force ratio. The proposed model is developed based on the experimentally obtained results by employing the exponential function with five factors of the spindle speed, the feed rate, the tool diameter, the depth of cut, and the dynamic cutting force ratio. The experimentally obtained results showed that the frequency of the dynamic cutting force corresponds with the frequency of the surface roughness profile in the frequency domain. Hence, the dimensionless dynamic cutting force ratio is proposed regardless of the cutting conditions to predict the in-process surface roughness by taking the ratio of the area of the dynamic cutting force in X axis to that in Z axis. The multiple regression analysis is adopted to calculate the regression coefficients at 95 % confident level. The experimentally obtained model has been verified by using the new cutting conditions. It is understood that the developed surface roughness model can be used to predict the in-process surface roughness with the high accuracy of 92.82 % for the average surface roughness and 91.54 % for the surface roughness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Benardos, P. G., & Vosniakos, G. C. (2002). Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robotics and Computer Integrated Manufacturing, 18, 343–354.CrossRef Benardos, P. G., & Vosniakos, G. C. (2002). Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robotics and Computer Integrated Manufacturing, 18, 343–354.CrossRef
Zurück zum Zitat Buj-Corral, I., Vivancos-Calvet, J., & Dominguez Fernandez, A. (2012). Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut. International Journal of Machine Tools & Manufacture, 53, 151–159.CrossRef Buj-Corral, I., Vivancos-Calvet, J., & Dominguez Fernandez, A. (2012). Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut. International Journal of Machine Tools & Manufacture, 53, 151–159.CrossRef
Zurück zum Zitat Colak, O., Kurbanoglu, C., & Kayacan, M. C. (2007). Milling surface roughness prediction using evolutionary programmimg methods. Materials and Design, 28, 657–666.CrossRef Colak, O., Kurbanoglu, C., & Kayacan, M. C. (2007). Milling surface roughness prediction using evolutionary programmimg methods. Materials and Design, 28, 657–666.CrossRef
Zurück zum Zitat Fontaine, M., Moufki, A., Devillez, A., & Dudzinski, D. (2007a). Modeling of cutting forces in ball-end milling with tool-surface inclination part I predictive force model and experimental validation. Journal of Materials Processing Technology, 189, 73–84.CrossRef Fontaine, M., Moufki, A., Devillez, A., & Dudzinski, D. (2007a). Modeling of cutting forces in ball-end milling with tool-surface inclination part I predictive force model and experimental validation. Journal of Materials Processing Technology, 189, 73–84.CrossRef
Zurück zum Zitat Fontaine, M., Moufki, A., Devillez, A., & Dudzinski, D. (2007b). Modeling of cutting forces in ball-end milling with tool-surface inclination part II influence of cutting condition, run-out, ploughing and inclination angle. Journal of Materials Processing Technology, 189, 85–96.CrossRef Fontaine, M., Moufki, A., Devillez, A., & Dudzinski, D. (2007b). Modeling of cutting forces in ball-end milling with tool-surface inclination part II influence of cutting condition, run-out, ploughing and inclination angle. Journal of Materials Processing Technology, 189, 85–96.CrossRef
Zurück zum Zitat Huang, P. B. (2014). An intelligent neural-fuzzy model for an in-process surface roughness monitoring system in end milling operations. Journal of Intelligent Manufacturing, Published online: 30 March 2014. Huang, P. B. (2014). An intelligent neural-fuzzy model for an in-process surface roughness monitoring system in end milling operations. Journal of Intelligent Manufacturing, Published online: 30 March 2014.
Zurück zum Zitat Karunasawat, K., & Tangjitsitcharoen, S. (2012). Surface roughness prediction in ball end milling process for aluminum by using air blow cutting. Advanced Materials Research, 418–420, 1428–1434. Karunasawat, K., & Tangjitsitcharoen, S. (2012). Surface roughness prediction in ball end milling process for aluminum by using air blow cutting. Advanced Materials Research, 418–420, 1428–1434.
Zurück zum Zitat Kovac, P., Rodic, D., Pucovsty, V., Savkovic, B., & Gostinirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent Manufacturing, 24, 755–762.CrossRef Kovac, P., Rodic, D., Pucovsty, V., Savkovic, B., & Gostinirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent Manufacturing, 24, 755–762.CrossRef
Zurück zum Zitat Lou, S. J., & Chen, J. C. (1999). In-process surface roughness recognition system in end milling operations. Journal of Advance Manufacturing Technology, 15, 200–209.CrossRef Lou, S. J., & Chen, J. C. (1999). In-process surface roughness recognition system in end milling operations. Journal of Advance Manufacturing Technology, 15, 200–209.CrossRef
Zurück zum Zitat Quinsat, Y., Sabourin, L., & Lartigue, C. (2008). Surface topography in ball-end milling process description of a 3D surface roughness parameter. Journal of Materials Processing Technology, 195, 135–143.CrossRef Quinsat, Y., Sabourin, L., & Lartigue, C. (2008). Surface topography in ball-end milling process description of a 3D surface roughness parameter. Journal of Materials Processing Technology, 195, 135–143.CrossRef
Zurück zum Zitat Quintana, G., Garcia-Romeu, M. L., & Ciurama, J. (2011). Surface roughness monitoring application based on artificial based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22, 607–617.CrossRef Quintana, G., Garcia-Romeu, M. L., & Ciurama, J. (2011). Surface roughness monitoring application based on artificial based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22, 607–617.CrossRef
Zurück zum Zitat Tangjitsitcharoen, S. (2011a). Advance in detection system to improve the stability and capability of CNC turning process. Journal of Intelligent Manufacturing, 22, 843–852.CrossRef Tangjitsitcharoen, S. (2011a). Advance in detection system to improve the stability and capability of CNC turning process. Journal of Intelligent Manufacturing, 22, 843–852.CrossRef
Zurück zum Zitat Tangjitsitcharoen, S. (2011b). In-process monitoring and prediction of surface roughness in CNC turning process. Advanced Materials Research, 199–200, 1958–1966.CrossRef Tangjitsitcharoen, S. (2011b). In-process monitoring and prediction of surface roughness in CNC turning process. Advanced Materials Research, 199–200, 1958–1966.CrossRef
Zurück zum Zitat Tangjitsitcharoen, S. (2013). Advanced prediction of surface roughness monitoring of dynamic cutting force in CNC turning process. Applied Mechanics and Materials, 239–240, 661–669. Tangjitsitcharoen, S. (2013). Advanced prediction of surface roughness monitoring of dynamic cutting force in CNC turning process. Applied Mechanics and Materials, 239–240, 661–669.
Zurück zum Zitat Tangjitsitcharoen, S., Rungruang, C., & Laiaddee, D. (2010). Mornitoring of dry cutting and applications of cutting fluid for ball-end milling. Industrial Engineering & Management Systems Journal, 9, 242–250.CrossRef Tangjitsitcharoen, S., Rungruang, C., & Laiaddee, D. (2010). Mornitoring of dry cutting and applications of cutting fluid for ball-end milling. Industrial Engineering & Management Systems Journal, 9, 242–250.CrossRef
Zurück zum Zitat Tangjitsitcharoen, S., Samanmit, K., & Ratanakuakangwan, S. (2014). Development of surface roughness prediction by utilizing dynamic cutting force ratio. Applied Mechanics and Materials, 490–493, 207–212.CrossRef Tangjitsitcharoen, S., Samanmit, K., & Ratanakuakangwan, S. (2014). Development of surface roughness prediction by utilizing dynamic cutting force ratio. Applied Mechanics and Materials, 490–493, 207–212.CrossRef
Zurück zum Zitat Tangjitsitcharoen, S., & Senjuntichai, A. (2011). Intelligent monitoring and prediction of surface roughness in ball-end milling process. Applied Mechanics and Materials, 121–126, 2059–2063.CrossRef Tangjitsitcharoen, S., & Senjuntichai, A. (2011). Intelligent monitoring and prediction of surface roughness in ball-end milling process. Applied Mechanics and Materials, 121–126, 2059–2063.CrossRef
Zurück zum Zitat Zhang, J. Z., & Chen, J. C. (2007). The development of an in-process surface roughness adaptive control system in end milling operations. Journal of Advance Manufacturing Technology, 31, 877–887.CrossRef Zhang, J. Z., & Chen, J. C. (2007). The development of an in-process surface roughness adaptive control system in end milling operations. Journal of Advance Manufacturing Technology, 31, 877–887.CrossRef
Zurück zum Zitat Zhang, J. Z., Chen, J. C., & Kirby, E. D. (2007). The development of an in-process surface roughness adaptive control system in turning operations. Journal of Intelligent Manufacturing, 18, 301–311.CrossRef Zhang, J. Z., Chen, J. C., & Kirby, E. D. (2007). The development of an in-process surface roughness adaptive control system in turning operations. Journal of Intelligent Manufacturing, 18, 301–311.CrossRef
Metadaten
Titel
Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio
verfasst von
S. Tangjitsitcharoen
P. Thesniyom
S. Ratanakuakangwan
Publikationsdatum
20.08.2014
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 1/2017
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-014-0958-8

Weitere Artikel der Ausgabe 1/2017

Journal of Intelligent Manufacturing 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.