Skip to main content
Erschienen in: Journal of Materials Science 22/2015

01.11.2015 | Original Paper

Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels

verfasst von: Kasinee Prakobna, Victor Kisonen, Chunlin Xu, Lars A. Berglund

Erschienen in: Journal of Materials Science | Ausgabe 22/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Softwood hemicelluloses could potentially be combined with cellulose and used in packaging materials. In the present study, galactoglucomannan (GGM) is adsorbed to wood cellulose nanofibers (CNF) and filtered and dried or hot-pressed to form nanocomposite films. The CNF/GGM fibril diameters are characterized by AFM, and the colloidal behavior by dynamic light scattering. Mechanical properties are measured in uniaxial tension for wet gels, dried films, and hot-pressed films. The role of GGM is particularly important for the wet gels. The wet gels of CNF/GGM exhibit remarkable improvement in mechanical properties. FE-SEM fractography and moisture sorption studies are carried out to interpret the results for hygromechanical properties. The present study shows that GGM may find use as a molecular scale cellulose binding agent, causing little sacrifice in mechanical properties and improving wet strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95CrossRef Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95CrossRef
2.
Zurück zum Zitat Kisonen V, Prakobna K, Xu C et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50:3189–3199. doi:10.1007/s10853-015-8882-7 CrossRef Kisonen V, Prakobna K, Xu C et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50:3189–3199. doi:10.​1007/​s10853-015-8882-7 CrossRef
3.
Zurück zum Zitat Carpita NC, McCann MC (2000) Chapter 2 “The cell wall”. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society Plant Physiologists, Rockville, pp 52–108 Carpita NC, McCann MC (2000) Chapter 2 “The cell wall”. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society Plant Physiologists, Rockville, pp 52–108
4.
Zurück zum Zitat Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The Biochemistry of Plants. Acedamic Press Inc, New York, pp 297–371CrossRef Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The Biochemistry of Plants. Acedamic Press Inc, New York, pp 297–371CrossRef
5.
Zurück zum Zitat Dinwoodie JM (1981) Timber: its nature and behaviour. Van Nostrand Reinhold, New York Dinwoodie JM (1981) Timber: its nature and behaviour. Van Nostrand Reinhold, New York
6.
Zurück zum Zitat Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116CrossRef Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116CrossRef
7.
Zurück zum Zitat Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–659CrossRef Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–659CrossRef
8.
Zurück zum Zitat Sturcova A, Davies GR, Eicchorn S (2006) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef Sturcova A, Davies GR, Eicchorn S (2006) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef
9.
Zurück zum Zitat Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef
10.
Zurück zum Zitat Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRef Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRef
11.
Zurück zum Zitat Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef
12.
Zurück zum Zitat Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef
13.
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 37:815–827
14.
Zurück zum Zitat Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031CrossRef Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031CrossRef
15.
Zurück zum Zitat Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726CrossRef Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726CrossRef
16.
Zurück zum Zitat Stevanic JS, Mikkonen KS, Xu C, Tenkanen M, Berglund L, Salmen L (2015) Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. J Mater Sci 49:5043–5055. doi:10.1007/s10853-014-8210-7 CrossRef Stevanic JS, Mikkonen KS, Xu C, Tenkanen M, Berglund L, Salmen L (2015) Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. J Mater Sci 49:5043–5055. doi:10.​1007/​s10853-014-8210-7 CrossRef
17.
Zurück zum Zitat Prakobna K, Terenzi C, Zhou Q, Furo I, Berglund LA (2015) Core-shell cellulose nanofibers for biocomposites—nanostructural effects in hydrated state. Carbohydr Polym 125:92–102CrossRef Prakobna K, Terenzi C, Zhou Q, Furo I, Berglund LA (2015) Core-shell cellulose nanofibers for biocomposites—nanostructural effects in hydrated state. Carbohydr Polym 125:92–102CrossRef
18.
Zurück zum Zitat Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press Inc., San Diego, pp 51–70CrossRef Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press Inc., San Diego, pp 51–70CrossRef
19.
Zurück zum Zitat Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Cabohydr Polym 52:175–187CrossRef Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Cabohydr Polym 52:175–187CrossRef
20.
Zurück zum Zitat Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257CrossRef Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257CrossRef
21.
Zurück zum Zitat Hartman J, Albertsson AC, Lindblad MS, Sjöberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRef Hartman J, Albertsson AC, Lindblad MS, Sjöberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRef
22.
Zurück zum Zitat Mikkonen KS, Heikkilä MI, Helen H, Hyvönen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79:1107–1112CrossRef Mikkonen KS, Heikkilä MI, Helen H, Hyvönen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79:1107–1112CrossRef
23.
Zurück zum Zitat Mikkonen KS, Yadav MP, Cooke P, Willför S, Hicks KB, Tenkanen M (2008) Films from spruce galactogluccomannan blended with poly(vinyl alcohol), corn arabonoxylan, and konjac glucomannan. Bioresource 3:178–191 Mikkonen KS, Yadav MP, Cooke P, Willför S, Hicks KB, Tenkanen M (2008) Films from spruce galactogluccomannan blended with poly(vinyl alcohol), corn arabonoxylan, and konjac glucomannan. Bioresource 3:178–191
24.
Zurück zum Zitat Teeri TT, Brumer H, Daniel G, Gatenholm P (2007) Biomimetic engineering of cellulose-based materials. Trends Biotechnol 25:299–306CrossRef Teeri TT, Brumer H, Daniel G, Gatenholm P (2007) Biomimetic engineering of cellulose-based materials. Trends Biotechnol 25:299–306CrossRef
25.
Zurück zum Zitat Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef
26.
Zurück zum Zitat Olszewska A, Valle-Delgado JJ, Nikinmaa M, Laine J, Österberg M (2013) Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose. Nanoscale 5:11837–11844CrossRef Olszewska A, Valle-Delgado JJ, Nikinmaa M, Laine J, Österberg M (2013) Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose. Nanoscale 5:11837–11844CrossRef
27.
Zurück zum Zitat Prakobna K, Galland S, Berglund LA (2015) High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers. Biomacromolecules 16:904–912CrossRef Prakobna K, Galland S, Berglund LA (2015) High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers. Biomacromolecules 16:904–912CrossRef
28.
Zurück zum Zitat Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structure of high toughness. Biomacromolecules 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structure of high toughness. Biomacromolecules 9:1579–1585CrossRef
29.
Zurück zum Zitat Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350CrossRef Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350CrossRef
30.
Zurück zum Zitat Lucenius J, Parikka K, Österberg M (2014) Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides. React Funct Polym 85:167–174CrossRef Lucenius J, Parikka K, Österberg M (2014) Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides. React Funct Polym 85:167–174CrossRef
31.
Zurück zum Zitat Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechnaical properties of primary plant cell walls. Plant Physiol 121:657–663CrossRef Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechnaical properties of primary plant cell walls. Plant Physiol 121:657–663CrossRef
32.
Zurück zum Zitat Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996CrossRef Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996CrossRef
33.
Zurück zum Zitat Cybulska J, Vanstreels E, Ho QT et al (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96:287–294CrossRef Cybulska J, Vanstreels E, Ho QT et al (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96:287–294CrossRef
34.
Zurück zum Zitat Willför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Recovery of water-soluble acetylgalactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32 Willför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Recovery of water-soluble acetylgalactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32
35.
Zurück zum Zitat Xu C, Eckerman C, Smeds A, Reunanen M, Eklund PC, Sjöholm R, Willför S (2009) Rheological properties of water-soluble spruce O-acetyl galactoglucomannans. Carbohydr Polym 75:p498–p504CrossRef Xu C, Eckerman C, Smeds A, Reunanen M, Eklund PC, Sjöholm R, Willför S (2009) Rheological properties of water-soluble spruce O-acetyl galactoglucomannans. Carbohydr Polym 75:p498–p504CrossRef
36.
Zurück zum Zitat Michielsen S (1999) Specific refractive index increments of polymers in dilute solution. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley, New York pp, pp 547–627 Michielsen S (1999) Specific refractive index increments of polymers in dilute solution. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley, New York pp, pp 547–627
37.
Zurück zum Zitat Sundberg A, Kenneth S, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Paper Res J 11:216–219CrossRef Sundberg A, Kenneth S, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Paper Res J 11:216–219CrossRef
38.
Zurück zum Zitat Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose-inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRef Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose-inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRef
39.
Zurück zum Zitat Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644CrossRef Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644CrossRef
40.
Zurück zum Zitat Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Cabohydr Res 307:299–309CrossRef Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Cabohydr Res 307:299–309CrossRef
41.
Zurück zum Zitat Eronen P, Österberg M, Heikkinen S, Tenkanen S, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290CrossRef Eronen P, Österberg M, Heikkinen S, Tenkanen S, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290CrossRef
42.
Zurück zum Zitat Vincken JP, Keizer AD, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108:1579–1585CrossRef Vincken JP, Keizer AD, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108:1579–1585CrossRef
43.
Zurück zum Zitat Xu C, Eckerman C, Smeds A et al (2011) Carboxymethylated spruce galactoglucomannans: preparation, characterisation, dispersion stability, water-in-oil emulsion stability, and sorption on cellulose surface. Nord Pulp Paper Res J 26:167–178CrossRef Xu C, Eckerman C, Smeds A et al (2011) Carboxymethylated spruce galactoglucomannans: preparation, characterisation, dispersion stability, water-in-oil emulsion stability, and sorption on cellulose surface. Nord Pulp Paper Res J 26:167–178CrossRef
44.
Zurück zum Zitat Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic material in aqueous: a review. BioResources 3:1419–1491 Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic material in aqueous: a review. BioResources 3:1419–1491
45.
Zurück zum Zitat Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338CrossRef Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338CrossRef
46.
Zurück zum Zitat Fernandes AN, Thomas L, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS Plus 108:E1195–E1203CrossRef Fernandes AN, Thomas L, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS Plus 108:E1195–E1203CrossRef
47.
Zurück zum Zitat Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/XG networks: ultrastructure and molecular. Plant J 8:491–504CrossRef Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/XG networks: ultrastructure and molecular. Plant J 8:491–504CrossRef
48.
Zurück zum Zitat Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70:1704–1712CrossRef Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70:1704–1712CrossRef
49.
Zurück zum Zitat Nilsson H, Galland S, Larsson PT, Gamstedt EK, Iversen T (2012) Compression molded wood pulp biocomposites: a study of hemicellulose influence on cellulose supramolecular structure and material properties. Cellulose 19:751–760CrossRef Nilsson H, Galland S, Larsson PT, Gamstedt EK, Iversen T (2012) Compression molded wood pulp biocomposites: a study of hemicellulose influence on cellulose supramolecular structure and material properties. Cellulose 19:751–760CrossRef
50.
Zurück zum Zitat Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure and property relationships. J Pulp Pap Sci 24:99–103 Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure and property relationships. J Pulp Pap Sci 24:99–103
51.
Zurück zum Zitat Kelly A (1970) Interface effects and the work of fracture of a fibrous composite. Proc R Soc Lond A 319:95–116CrossRef Kelly A (1970) Interface effects and the work of fracture of a fibrous composite. Proc R Soc Lond A 319:95–116CrossRef
52.
Zurück zum Zitat Brunauer S (1943) The adsorption of gases and vapors-I physical adsorption. Princeton University Press, Princeton Brunauer S (1943) The adsorption of gases and vapors-I physical adsorption. Princeton University Press, Princeton
53.
Zurück zum Zitat Obataya E, Norimoto M, Gril J (1998) The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39:3059–3064CrossRef Obataya E, Norimoto M, Gril J (1998) The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39:3059–3064CrossRef
54.
Zurück zum Zitat Luo HL, Lian JJ, Wan YZ, Huang Y, Wang YL, Jiang HJ (2006) Moisture absorption in VARTMed three-dimensional braided carbon-epoxy composites with different interface conditons. Mater Sci Eng A 425:70–77CrossRef Luo HL, Lian JJ, Wan YZ, Huang Y, Wang YL, Jiang HJ (2006) Moisture absorption in VARTMed three-dimensional braided carbon-epoxy composites with different interface conditons. Mater Sci Eng A 425:70–77CrossRef
Metadaten
Titel
Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels
verfasst von
Kasinee Prakobna
Victor Kisonen
Chunlin Xu
Lars A. Berglund
Publikationsdatum
01.11.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9299-z

Weitere Artikel der Ausgabe 22/2015

Journal of Materials Science 22/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.