Skip to main content
Erschienen in: Journal of Materials Science 13/2017

04.04.2017 | Original Paper

High-concentration shear-exfoliated colloidal dispersion of surfactant–polymer-stabilized few-layer graphene sheets

verfasst von: Josphat Phiri, Patrick Gane, Thad C. Maloney

Erschienen in: Journal of Materials Science | Ausgabe 13/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To exploit the remarkable properties of graphene fully, an efficient large-scale production method is required. Sonication-assisted liquid-phase exfoliation of graphite, for example, has been extensively used for the production of few-layer graphene sheets, but suffers from low efficiency and high energy consumption and thus is not viable for large-scale production. Here we demonstrate a method that is more efficient and has higher scalability potential than sonication. We show that a few-layer graphene at high concentration of up to 1.1 mg ml−1 can be achieved in aqueous-based medium by highly efficient shear exfoliation of graphite in a processing time of just 2 h. The exfoliation process was carried out in a commercially available high shear colloidal mixer fixed with a three-stage rotor–stator shear generator for optimum exfoliation with a continuous circulation system. The high efficiency and a significant improvement over sonication adopting our method were demonstrated by the fact that the conversion to few-layer graphene sheets produced after just 30 min by shear exfoliation required, in contrast, 100s of hours by sonication. High-concentration defect-free few-layer graphene in aqueous medium, produced at short shearing time, demonstrates that this method has high potential for large-scale production. The produced graphene films exhibit additionally a high electrical conductivity of about 29000 S m−1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
Zurück zum Zitat Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
4.
Zurück zum Zitat Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39CrossRef Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39CrossRef
5.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
6.
Zurück zum Zitat Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514CrossRef Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514CrossRef
7.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
8.
Zurück zum Zitat Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462CrossRef Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462CrossRef
9.
Zurück zum Zitat Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef
10.
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRef Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRef
11.
Zurück zum Zitat Wei D, Kivioja J (2013) Graphene for energy solutions and its industrialization. Nanoscale 5:10108–10126CrossRef Wei D, Kivioja J (2013) Graphene for energy solutions and its industrialization. Nanoscale 5:10108–10126CrossRef
12.
Zurück zum Zitat Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef
13.
Zurück zum Zitat Bao Q (2010) Graphene–polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef Bao Q (2010) Graphene–polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef
14.
Zurück zum Zitat Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene–polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972CrossRef Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene–polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972CrossRef
15.
Zurück zum Zitat Istrate OM, Paton KR, Khan U, O’Neill A, Bell AP, Coleman JN (2014) Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78:243–249CrossRef Istrate OM, Paton KR, Khan U, O’Neill A, Bell AP, Coleman JN (2014) Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78:243–249CrossRef
16.
Zurück zum Zitat Keeley GP, O’Neill A, McEvoy N, Peltekis N, Coleman JN, Duesberg GS (2010) Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J Mater Chem 20:7864–7869CrossRef Keeley GP, O’Neill A, McEvoy N, Peltekis N, Coleman JN, Duesberg GS (2010) Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J Mater Chem 20:7864–7869CrossRef
17.
Zurück zum Zitat Tian H, Shu Y, Cui YL, Mi WT, Yang Y, Xie D, Ren TL (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705CrossRef Tian H, Shu Y, Cui YL, Mi WT, Yang Y, Xie D, Ren TL (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705CrossRef
18.
Zurück zum Zitat Kavan L, Yum JH, Gratzel M (2011) Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5:165–172CrossRef Kavan L, Yum JH, Gratzel M (2011) Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5:165–172CrossRef
19.
Zurück zum Zitat Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS, Hsieh GW, Jung S, Bonaccorso F, Paul PJ, Chu D, Ferrari AC (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006CrossRef Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS, Hsieh GW, Jung S, Bonaccorso F, Paul PJ, Chu D, Ferrari AC (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006CrossRef
20.
Zurück zum Zitat Gao Y, Shi W, Wang W, Leng Y, Zhao Y (2014) Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind Eng Chem Res 53:16777–16784CrossRef Gao Y, Shi W, Wang W, Leng Y, Zhao Y (2014) Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind Eng Chem Res 53:16777–16784CrossRef
21.
Zurück zum Zitat Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. J Am Chem Soc 131:8262–8270CrossRef Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. J Am Chem Soc 131:8262–8270CrossRef
22.
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453CrossRef Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453CrossRef
23.
Zurück zum Zitat Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K-, Mizuno S (2012) Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmospheric pressure CVD. Carbon 50:57–65CrossRef Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K-, Mizuno S (2012) Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmospheric pressure CVD. Carbon 50:57–65CrossRef
24.
Zurück zum Zitat Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRef Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRef
25.
Zurück zum Zitat Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng LM (2014) How good can CVD-grown monolayer graphene be? Nanoscale 6:15255–15261CrossRef Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng LM (2014) How good can CVD-grown monolayer graphene be? Nanoscale 6:15255–15261CrossRef
26.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
27.
Zurück zum Zitat Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef
28.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
29.
Zurück zum Zitat Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470CrossRef Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470CrossRef
30.
Zurück zum Zitat Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15:564–589CrossRef Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15:564–589CrossRef
31.
Zurück zum Zitat Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28CrossRef Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28CrossRef
32.
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef
33.
Zurück zum Zitat Wajid AS, Das S, Irin F, Ahmed HST, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50:526–534CrossRef Wajid AS, Das S, Irin F, Ahmed HST, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50:526–534CrossRef
34.
Zurück zum Zitat Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149:2172–2176CrossRef Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149:2172–2176CrossRef
35.
Zurück zum Zitat Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4:3155–3162CrossRef Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4:3155–3162CrossRef
36.
Zurück zum Zitat Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662CrossRef Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662CrossRef
37.
Zurück zum Zitat Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620CrossRef Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620CrossRef
38.
Zurück zum Zitat Notley SM (2012) Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir 28:14110–14113CrossRef Notley SM (2012) Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir 28:14110–14113CrossRef
39.
Zurück zum Zitat Xu J, Dang DK, Tran VT, Liu X, Chung JS, Hur SH, Choi WM, Kim EJ, Kohl PA (2014) Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. J Colloid Interface Sci 418:37–42CrossRef Xu J, Dang DK, Tran VT, Liu X, Chung JS, Hur SH, Choi WM, Kim EJ, Kohl PA (2014) Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. J Colloid Interface Sci 418:37–42CrossRef
40.
Zurück zum Zitat Zhu L, Zhao X, Li Y, Yu X, Li C, Zhang Q (2013) High-quality production of graphene by liquid-phase exfoliation of expanded graphite. Mater Chem Phys 137:984–990CrossRef Zhu L, Zhao X, Li Y, Yu X, Li C, Zhang Q (2013) High-quality production of graphene by liquid-phase exfoliation of expanded graphite. Mater Chem Phys 137:984–990CrossRef
41.
Zurück zum Zitat Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630CrossRef Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630CrossRef
42.
Zurück zum Zitat Yi M, Shen Z (2014) Kitchen blender for producing high-quality few-layer graphene. Carbon 78:622–626CrossRef Yi M, Shen Z (2014) Kitchen blender for producing high-quality few-layer graphene. Carbon 78:622–626CrossRef
43.
Zurück zum Zitat Walker GF, Garrett WG (1967) Chemical exfoliation of vermiculite and the production of colloidal dispersions. Science 156:385–387CrossRef Walker GF, Garrett WG (1967) Chemical exfoliation of vermiculite and the production of colloidal dispersions. Science 156:385–387CrossRef
44.
Zurück zum Zitat Shinde DB, Brenker J, Easton CD, Tabor RF, Neild A, Majumder M (2016) Shear assisted electrochemical exfoliation of graphite–graphene. Langmuir 32:3552–3559CrossRef Shinde DB, Brenker J, Easton CD, Tabor RF, Neild A, Majumder M (2016) Shear assisted electrochemical exfoliation of graphite–graphene. Langmuir 32:3552–3559CrossRef
45.
Zurück zum Zitat Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun 48:3703–3705CrossRef Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun 48:3703–3705CrossRef
46.
Zurück zum Zitat Li L, Nicholas RJ, Chen C, Darton RC, Baker SC (2005) Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology 16:S202–S205CrossRef Li L, Nicholas RJ, Chen C, Darton RC, Baker SC (2005) Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology 16:S202–S205CrossRef
47.
Zurück zum Zitat Hertel T, Hagen A, Talalaev V, Arnold K, Hennrich F, Kappes M, Rosenthal S, McBride J, Ulbricht H, Flahaut E (2005) Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett 5:511–514CrossRef Hertel T, Hagen A, Talalaev V, Arnold K, Hennrich F, Kappes M, Rosenthal S, McBride J, Ulbricht H, Flahaut E (2005) Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett 5:511–514CrossRef
48.
Zurück zum Zitat Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112:10692–10699CrossRef Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112:10692–10699CrossRef
49.
Zurück zum Zitat Lin S, Blankschtein D (2010) Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study. J Phys Chem B 114:15616–15625CrossRef Lin S, Blankschtein D (2010) Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study. J Phys Chem B 114:15616–15625CrossRef
50.
Zurück zum Zitat Backes C, Paton KR, Hanlon D, Yuan S, Katsnelson MI, Houston J, Smith RJ, McCloskey D, Donegan JF, Coleman JN (2016) Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8:4311–4323CrossRef Backes C, Paton KR, Hanlon D, Yuan S, Katsnelson MI, Houston J, Smith RJ, McCloskey D, Donegan JF, Coleman JN (2016) Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8:4311–4323CrossRef
51.
Zurück zum Zitat Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871CrossRef Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871CrossRef
52.
Zurück zum Zitat Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9:4031–4036CrossRef Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9:4031–4036CrossRef
53.
Zurück zum Zitat Xu L, McGraw J, Gao F, Grundy M, Ye Z, Gu Z, Shepherd JL (2013) Production of high-concentration graphene dispersions in low-boiling-point organic solvents by liquid-phase noncovalent exfoliation of graphite with a hyperbranched polyethylene and formation of graphene/ethylene copolymer composites. J Phys Chem C 117:10730–10742CrossRef Xu L, McGraw J, Gao F, Grundy M, Ye Z, Gu Z, Shepherd JL (2013) Production of high-concentration graphene dispersions in low-boiling-point organic solvents by liquid-phase noncovalent exfoliation of graphite with a hyperbranched polyethylene and formation of graphene/ethylene copolymer composites. J Phys Chem C 117:10730–10742CrossRef
54.
Zurück zum Zitat Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26:3208–3213CrossRef Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26:3208–3213CrossRef
55.
Zurück zum Zitat Wei Y, Sun Z (2015) Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr Opin Colloid Interface Sci 20:311–321CrossRef Wei Y, Sun Z (2015) Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr Opin Colloid Interface Sci 20:311–321CrossRef
56.
Zurück zum Zitat Wang X, Zhi L, Tsao N, Tomović Ž, Li J, Müllen K (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed Engl 47:2990–2992CrossRef Wang X, Zhi L, Tsao N, Tomović Ž, Li J, Müllen K (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed Engl 47:2990–2992CrossRef
57.
Zurück zum Zitat Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
58.
Zurück zum Zitat Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432CrossRef Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432CrossRef
59.
Zurück zum Zitat Lee S, Lim S, Lim E, Lee KK (2010) Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of conductive polymer. J Phys Chem Solids 71:483–486CrossRef Lee S, Lim S, Lim E, Lee KK (2010) Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of conductive polymer. J Phys Chem Solids 71:483–486CrossRef
60.
Zurück zum Zitat Gayathri S, Jayabal P, Kottaisamy M, Ramakrishnan V (2014) Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv 4:027116CrossRef Gayathri S, Jayabal P, Kottaisamy M, Ramakrishnan V (2014) Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv 4:027116CrossRef
61.
Zurück zum Zitat Buzaglo M, Shtein M, Kober S, Lovrincic R, Vilan A, Regev O (2013) Critical parameters in exfoliating graphite into graphene. Phys Chem Chem Phys 15:4428–4435CrossRef Buzaglo M, Shtein M, Kober S, Lovrincic R, Vilan A, Regev O (2013) Critical parameters in exfoliating graphite into graphene. Phys Chem Chem Phys 15:4428–4435CrossRef
62.
Zurück zum Zitat Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9:3460–3462CrossRef Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9:3460–3462CrossRef
63.
Zurück zum Zitat Shahil KM, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867CrossRef Shahil KM, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867CrossRef
64.
Zurück zum Zitat O’Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN (2011) Graphene dispersion and exfoliation in low boiling point solvents. J Phys Chem C 115:5422–5428CrossRef O’Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN (2011) Graphene dispersion and exfoliation in low boiling point solvents. J Phys Chem C 115:5422–5428CrossRef
65.
Zurück zum Zitat Haar S, Gemayel M, Shin Y, Melinte G, Squillaci MA, Ersen O, Casiraghi C, Ciesielski A, Samori P (2015) Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene. Sci Rep 5:16684CrossRef Haar S, Gemayel M, Shin Y, Melinte G, Squillaci MA, Ersen O, Casiraghi C, Ciesielski A, Samori P (2015) Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene. Sci Rep 5:16684CrossRef
66.
67.
Zurück zum Zitat Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRef Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRef
68.
Zurück zum Zitat Yoon D, Moon H, Cheong H, Choi J, Choi J, Park B (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55:1299–1303CrossRef Yoon D, Moon H, Cheong H, Choi J, Choi J, Park B (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55:1299–1303CrossRef
69.
Zurück zum Zitat Gruneis A, Attaccalite C, Wirtz L, Shiozawa H, Saito R, Pichler T, Rubio A (2008) Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene 78:205425 Gruneis A, Attaccalite C, Wirtz L, Shiozawa H, Saito R, Pichler T, Rubio A (2008) Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene 78:205425
70.
Zurück zum Zitat Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JTL (2010) Probing layer number and stacking order of few-layer graphene by Raman. Spectroscopy 6:195–200 Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JTL (2010) Probing layer number and stacking order of few-layer graphene by Raman. Spectroscopy 6:195–200
71.
Zurück zum Zitat Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91:233108CrossRef Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91:233108CrossRef
72.
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRef
73.
Zurück zum Zitat Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov KS, Basko DM, Ferrari AC (2009) Raman spectroscopy of graphene edges. Nano Lett 9:1433–1441CrossRef Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov KS, Basko DM, Ferrari AC (2009) Raman spectroscopy of graphene edges. Nano Lett 9:1433–1441CrossRef
74.
Zurück zum Zitat Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721CrossRef Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721CrossRef
Metadaten
Titel
High-concentration shear-exfoliated colloidal dispersion of surfactant–polymer-stabilized few-layer graphene sheets
verfasst von
Josphat Phiri
Patrick Gane
Thad C. Maloney
Publikationsdatum
04.04.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1049-y

Weitere Artikel der Ausgabe 13/2017

Journal of Materials Science 13/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.